Showing posts with label measures. Show all posts
Showing posts with label measures. Show all posts

07 May 2024

🏭🗒️Microsoft Fabric: The Metrics Layer [Notes] 🆕

Disclaimer: This is work in progress intended to consolidate information from various sources for learning purposes. For the latest information please consult the documentation (see the links below)! 

Last updated: 07-May-2024

The Metrics Layer in Microsoft Fabric (adapted diagram)
The Metrics Layer in Microsoft Fabric (adapted diagram)

[new feature] Metrics Layer (Metrics Store)

  • {definition}an abstraction layer available between the data store(s) and end users which allows organizations to create standardized business metrics, that are rooted in measures and are discoverable and intended for reuse
    • ⇐ {important} feature still in private preview 
  • {goal} extend existing infrastructure 
    • {benefit} leverages and extends existing features
  • {goal} provide consistent definitions and descriptions [1]
    • consistent definitions that include besides business logic additional dimensions and filters [1]
    • ⇒ {benefit} allows to standardize the metrics across the organization
    • ⇒ {benefit} enforce to enforce a SSoT
  • {goal} easy management 
    • via management views 
    • [feature] lineage 
    • [feature] source control
    • [feature] duplicate identification
    • [feature] push updates to downstream uses of the metrics 
  • {goal}searchable and discoverable metrics 
    • {feature} integration
      • based on Sempy fabric package
        • ⇐ a dataframe for storage and propagation of Power BI metadata which is part of the python-based semantic Link in Fabric
  • {goal}trust
    • [feature] trust indicators
    • {benefit} facilitates report's adoption
  • {feature} metric set 
    • {definition} a Fabric item that groups together a set of metrics into a mini-model
    • {benefit} allows to reduce the overall complexity of semantic models, while being easy to evolve and consume
    • associated with a single domain
      • ⇒ supports the data mesh architecture
    • shareable 
      • can be shared with other users
    • {action} create metric set
      • creates the actual artifact, to which metrics can be added 
  • {feature} metric
    •  {definition} a way to elevate the measures from the various semantic models existing in the organization
    • tied to the original semantic model
      • ⇒ {benefit} allows to see how a metric is used across the solutions 
    • reusable
      • can be reused in other fabric artifacts
        • new reports on the Power BI service
        • notebooks 
          • by copying the code
      • can be reused in Power BI
        • via OneLake data hub menu element
      • can be chained 
        • changes are propagated downstream 
    • materializable 
      • its output can be persisted to OneLake by saving it a delta table into a lakehouse
      • {misuse} data is persisted unnecessarily
    • {action} elevate metric
      • copies measure's definition and description
      • ⇒  implies restructuring, refactoring, moving, and testing a lot of code in the process
      • {misuse} data professionals build everything as metrics
    • {action} update metric
    • {action} add filters to metric 
    • {action} add dimensions to metric
    • {action} materialize metric 

References:
[1] Power BI Tips (2024) Explicit Measures Ep. 236: Metrics Hub, Hot New Feature with Carly Newsome (link)
[2] Power BI Tips (2024) Introducing Fabric Metrics Layer / Power Metrics Hub [with Carly Newsome] (link)

Resources:
[R1] Microsoft Learn (2025) Fabric: What's new in Microsoft Fabric? [link]

Acronyms:
SSoT - single source of truth ()

02 December 2015

🪙Business Intelligence: Measure (Just the Quotes)

"[…] when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science." (William T Kelvin, "Electrical Units of Measurement", 1883)

"Quantify. If whatever it is you’re explaining has some measure, some numerical quantity attached to it, you’ll be much better able to discriminate among competing hypotheses. What is vague and qualitative is open to many explanations." (Carl Sagan, "The Demon-Haunted World: Science as a Candle in the Dark", 1995)

"Clearly, the mean is greatly influenced by extreme values, but it can be appropriate for many situations where extreme values do not arise. To avoid misuse, it is essential to know which summary measure best reflects the data and to use it carefully. Understanding the situation is necessary for making the right choice. Know the subject!" (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Our culture, obsessed with numbers, has given us the idea that what we can measure is more important than what we can't measure. Think about that for a minute. It means that we make quantity more important than quality." (Donella Meadows, "Thinking in Systems: A Primer", 2008)

"What gets measured gets managed - even when it’s pointless to measure and manage it, and even if it harms the purpose of the organisation to do so." (Simon Caulkin, "The rule is simple: be careful what you measure", 2008) [source]

"What gets measured gets managed - so be sure you have the right measures, because the wrong ones kill." (Simon Caulkin, "The rule is simple: be careful what you measure", 2008) [source]

"Once these different measures of performance are consolidated into a single number, that statistic can be used to make comparisons […] The advantage of any index is that it consolidates lots of complex information into a single number. We can then rank things that otherwise defy simple comparison […] Any index is highly sensitive to the descriptive statistics that are cobbled together to build it, and to the weight given to each of those components. As a result, indices range from useful but imperfect tools to complete charades." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Until a new metric generates a body of data, we cannot test its usefulness. Lots of novel measures hold promise only on paper." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Selecting the right measure and measuring things right are both art and science. And KPIs influence management behavior as well as business culture." (Pearl Zhu, "CIO Master: Unleash the Digital Potential of It", 2016)

"It’d be nice to fondly imagine that high-quality statistics simply appear in a spreadsheet somewhere, divine providence from the numerical heavens. Yet any dataset begins with somebody deciding to collect the numbers. What numbers are and aren’t collected, what is and isn’t measured, and who is included or excluded are the result of all-too-human assumptions, preconceptions, and oversights." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"People do care about how they are measured. What can we do about this? If you are in the position to measure something, think about whether measuring it will change people’s behaviors in ways that undermine the value of your results. If you are looking at quantitative indicators that others have compiled, ask yourself: Are these numbers measuring what they are intended to measure? Or are people gaming the system and rendering this measure useless?" (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"As long as measurements are abused as a tool of control, measuring will remain the weakest area in a manager’s performance." (Peter Drucker)

"For although it is certainly true that quantitative measurements are of great importance, it is a grave error to suppose that the whole of experimental physics can be brought under this heading. We can start measuring only when we know what to measure: qualitative observation has to precede quantitative measurement, and by making experimental arrangements for quantitative measurements we may even eliminate the possibility of new phenomena appearing." (Heinrich B G Casimir)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.