Showing posts with label union. Show all posts
Showing posts with label union. Show all posts

05 February 2025

🌌🏭KQL Reloaded: First Steps (Part IV: Left, Right, Anti-Joins and Unions)

In a standard scenario there is a fact table and multiple dimension table (see previous post), though one can look at the same data from multiple perspectives. In KQL it's recommended to start with the fact table, however in some reports one needs records from the dimension table independently whether there are any records in the fact tale.  

For example, it would be useful to show all the products, independently whether they were sold or not. It's what the below query does via a RIGHT JOIN between the fact table and the Customer dimension:

// totals by customer via right join
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost) by CustomerKey
| join kind=rightouter (
    Customers
    | where RegionCountryName in ('Canada', 'Australia')
    | project CustomerKey, RegionCountryName, CustomerName = strcat(FirstName, ' ', LastName)
    )
    on CustomerKey
| project RegionCountryName, CustomerName, TotalCost
//| summarize record_count = count() 
| order by CustomerName asc

The Product details can be added then via a LEFT JOIN between the fact table and the Product dimension:

// total by customer via right join with product information
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost)
    , FirstPurchaseDate = min(DateKey)
    , LastPurchaseDate = max(DateKey) by CustomerKey, ProductKey
| join kind=rightouter (
    Customers
    | where RegionCountryName in ('Canada', 'Australia')
    | project CustomerKey, RegionCountryName, CustomerName = strcat(FirstName, ' ', LastName)
    )
    on CustomerKey
| join kind=leftouter (
    Products 
    | where  ProductCategoryName == 'TV and Video'
    | project ProductKey, ProductName 
    )
    on ProductKey
| project RegionCountryName, CustomerName, ProductName, TotalCost, FirstPurchaseDate, LastPurchaseDate, record_count
//| where record_count>1 // multiple purchases
| order by CustomerName asc, ProductName asc

These kind of queries need adequate validation and for this it might be needed to restructure the queries. 

// validating the multiple records (defailed)
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| lookup Products on ProductKey
| lookup Customers on CustomerKey 
| where  FirstName == 'Alexandra' and LastName == 'Sanders'
| project CustomerName = strcat(FirstName, ' ', LastName), ProductName, TotalCost, DateKey, ProductKey, CustomerKey 

// validating the multiple records against the fact table (detailed)
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| where CustomerKey == 14912

Mixing RIGHT and  LEFT joins in this way increases the complexity of the queries and sometimes comes with a burden for validating the logic. In SQL one could prefer to start with the Customer table, add the summary data and the other dimensions. In this way one can do a total count individually starting with the Customer table and adding each join which reviewing the record count for each change. 

In special scenario instead of a RIGHT JOIN one could use a FULL JOIN and add the Customers without any orders via a UNION. In some scenarios this approach can offer even a better performance. For this approach, one needs to get the Customers without Orders via an anti-join, more exactly a   rightanti:

// customers without orders
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost)
    , FirstPurchaseDate = min(DateKey)
, LastPurchaseDate = max(DateKey) by CustomerKey, ProductKey
| join kind=rightanti (
    Customers
    | project CustomerKey, RegionCountryName, CustomerName = strcat(FirstName, ' ', LastName)
    )
    on CustomerKey
| project RegionCountryName, CustomerName, ProductName = '', TotalCost = 0
//| summarize count()
| order by CustomerName asc, ProductName asc

And now, joining the Customers with orders with the ones without orders gives an overview of all the customers:

// total by product via lookup with table alias
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost) by CustomerKey //, ProductKey 
//| lookup Products on ProductKey 
| lookup Customers on CustomerKey
| project RegionCountryName
    , CustomerName = strcat(FirstName, ' ', LastName)
    //, ProductName
    , TotalCost
//| summarize count()
| union withsource=SourceTable kind=outer (
    // customers without orders
    NewSales
    | where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
    | where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
    | summarize record_count = count()
        , TotalCost = sum(TotalCost)
        , FirstPurchaseDate = min(DateKey)
        , LastPurchaseDate = max(DateKey) by CustomerKey
        //, ProductKey
    | join kind=rightanti (
        Customers
        | project CustomerKey
            , RegionCountryName
            , CustomerName = strcat(FirstName, ' ', LastName)
        )
        on CustomerKey
    | project RegionCountryName
        , CustomerName
        //, ProductName = ''
        , TotalCost = 0
    //| summarize count()
)
//| summarize count()
| order by CustomerName asc
//, ProductName asc

And, of course, the number of records returned by the three queries must match. The information related to the Product were left out for this version, though it can be added as needed. Unfortunately, there are queries more complex than this, which makes the queries more difficult to read, understand and troubleshoot. Inline views could be useful to structure the logic as needed. 

let T_customers_with_orders = view () { 
    NewSales
    | where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
    | where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
    | summarize record_count = count()
        , TotalCost = sum(TotalCost) 
        by CustomerKey
         //, ProductKey 
         //, DateKey
    //| lookup Products on ProductKey 
    | lookup Customers on CustomerKey
    | project RegionCountryName
        , CustomerName = strcat(FirstName, ' ', LastName)
        //, ProductName
        //, ProductCategoryName
        , TotalCost
        //, DateKey
};
let T_customers_without_orders = view () { 
   // customers without orders
    NewSales
    | where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
    | where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
    | summarize record_count = count()
        , TotalCost = sum(TotalCost)
        , FirstPurchaseDate = min(DateKey)
        , LastPurchaseDate = max(DateKey) by CustomerKey
        //, ProductKey
    | join kind=rightanti (
        Customers
        | project CustomerKey
            , RegionCountryName
            , CustomerName = strcat(FirstName, ' ', LastName)
        )
        on CustomerKey
    | project RegionCountryName
        , CustomerName
        //, ProductName = ''
        , TotalCost = 0
    //| summarize count()
};
T_customers_with_orders
| union withsource=SourceTable kind=outer T_customers_without_orders
| summarize count()

In this way the queries should be easier to troubleshoot and restructure the logic in more manageable pieces. 

It would be useful to save the definition of the view (aka stored view), however it's not possible to create views on the machine on which the tests are run:

"Principal 'aaduser=...' is not authorized to write database 'ContosoSales'."

Happy coding!

Previous Post <<||>> Next Post

25 December 2024

💎🏭SQL Reloaded: Number of Records IV (via sys.partitions DMV)

To get the exact number of records in a table one can use the COUNT (see post) or the more recent COUNT_BIG function, though for big tables this can be an inefficient operation for the database engine:

-- number of records via COUNT
SELECT count(*) row_count
FROM SalesLT.Product

Moreover, sometimes the operation needs to be repeated for a number of tables, e.g. dropdown tables in Dynamics 365 for Finance and Operations (D365 F&O). Writing the query as a UNION allows to export the data as a single table and do comparisons (e.g. in Excel). The same approach can be used also when multiple columns are used for grouping, though one must account for the additional columns in the other subqueries. However, the more tables are involved, the more difficult it becomes to maintain the query over time. 
 
-- number of records via COUNT for multiple tables
SELECT 'SalesLT.Product' table_name
, count(*) row_count
FROM SalesLT.Product
UNION ALL
SELECT 'SalesLT.ProductDescription' table_name
, count(*) row_count
FROM SalesLT.ProductDescription
UNION ALL
SELECT 'SalesLT.ProductModel' table_name
, count(*) row_count
FROM SalesLT.ProductModel

There are many scenarios in which it's needed to get an approximate of the number of records available in a table and doing a record count might prove to be too expensive. For a quick and dirty solution one can use the sys.partitions DMV  instead:

-- number of records via DMV for single object
SELECT object_id
, OBJECT_NAME(object_id) object_name
, OBJECT_SCHEMA_NAME(object_id) schema_name
, SUM(Rows) AS row_count
, data_compression_desc AS compression_type
, COUNT(*) partitions_count
FROM sys.partitions 
WHERE index_id < 2 --ignore the partitions from the non-clustered index if any
  AND OBJECT_ID('SalesLT.Product') = object_id
GROUP BY object_id
, data_compression_desc
ORDER BY row_count DESC;

The query is based on sys.partitions table [1] which contains a row for each partition of all the tables and most types of indexes in the database. The documentation mentions that "rows" indicates the approximate number of rows in the considered partition.

Alternatively, one can bring more tables into the query to extend its range of applicability. 

-- number of records via DMVs
SELECT S.name + '.' + T.name SearchName
, S.Name SchemaName
, T.name TableName
, P.row_count
, P.compression_type
, P.partitions_count
FROM sys.tables T
     LEFT JOIN (
        SELECT object_id
        , SUM(Rows) AS row_count
        , data_compression_desc AS compression_type
        , COUNT(*) partitions_count
        FROM sys.partitions 
        WHERE index_id < 2 --ignore the partitions from the non-clustered index if any
        --AND OBJECT_ID('SalesLT.Product') = object_id
        GROUP BY object_id
        , data_compression_desc
     ) P
    ON T.object_id = P.object_id
     JOIN sys.schemas as S
	   on S.schema_id = T.schema_id
WHERE S.Name = 'SalesLT'
  AND T.Name LIKE 'Product%'
ORDER BY row_count DESC;

The data can be exported regularly to give an idea how tables' cardinality changes over time. One can find this useful as part of the loading process in data warehouses or other solutions (e.g. data migrations). 

By using a FULL JOIN instead of a LEFT JOIN one can retrieve only the tables that have records. 

One should consider only the tables in scope, and eventually remove the records associated with the system objects (e.g. sys or information_schema upon case).

 -- constraints to be added in the WHERE clause to remove the records related to system objects
 AND OBJECT_NAME(object_id) NOT LIKE 'sys%'
 AND OBJECT_NAME(object_id) NOT LIKE 'queue_%' 
 AND OBJECT_NAME(object_id) NOT LIKE 'filestream_tombstone%' 

There are also scenarios in which the count is needed only for a subset of the data. It's the case of D365 F&O (in which the number of records is needed by DataAreaId (aka company) or another field. A solution can be built using the sp_MSForEachTable stored procedure (see the last query from this post) and a cursor.

Notes:
1) Unfortunately, in Microsoft Fabric warehouses the sys.partitions.rows is 0 for all user tables and currently also the sp_MSForEachTable stored procedure can't be used to retrieve the number of records for all tables. However, one can create an old-fashioned cursor for iterating though the collection of tables in scope.
2) The code used in this post is available also in the GitHub repository.

Happy coding and Merry Christmas!

Previous Post <<||>> Next Post

Resources:
[1] Microsoft Learn (2024) sys.partitions (Transact-SQL) [link]
[2] Microsoft Learn (2024) COUNT_BIG (Transact-SQL) [link]

29 April 2024

⚡️Power BI: Working with Visual Calculations (Part III: Matrix Tables with Square Numbers as Example)

Introduction

In the previous post I exemplified various operations that can be performed with visual calculations on simple tables based on square numbers. Changing the simple table to a matrix table doesn't bring any benefit. The real benefit comes when one restructures the table to store only a cell per row in a table. 

Data Modelling

For this the Magic5 table can be transformed via the following code, which creates a second table (e.g. M5):

M5 = UNION (
    SUMMARIZECOLUMNS(
     Magic5[Id]
     , Magic5[R]
     , Magic5[Index]
     , Magic5[C1]
     , "Col", "C1"
    )
    , SUMMARIZECOLUMNS(
     Magic5[Id]
     , Magic5[R]
     , Magic5[Index]
     , Magic5[C2]
     , "Col", "C2"
    )
    , SUMMARIZECOLUMNS(
     Magic5[Id]
     , Magic5[R]
     , Magic5[Index]
     , Magic5[C3]
     , "Col", "C3"
    )
    ,  SUMMARIZECOLUMNS(
     Magic5[Id]
     , Magic5[R]
     , Magic5[Index]
     , Magic5[C4]
     , "Col", "C4"
    )
    , SUMMARIZECOLUMNS(
      Magic5[Id]
     , Magic5[R]
     , Magic5[Index]
     , Magic5[C5]
     , "Col", "C5"
    )
)

Once this done, one can add the column [Col] as values for the matrix in a new visual. From now on, all the calculations can be done on copies of this visual. 

Simple Operations

The behavior of the RUNNINGSUM and other functions is different when applied on a matrix table because the formula is applied to every cell of the N*N table, a column with the result being added for each existing column of the matrix.

Moreover, there are four different ways of applying the formula based on the Axis used. ROW calculates the formula by the row within a column:

Run SumByRow(C) = RUNNINGSUM([C], ROWS)
Output:
R C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C)
R1 18 18 25 25 2 2 9 9 11 11
R2 4 22 6 31 13 15 20 29 22 33
R3 15 37 17 48 24 39 1 30 8 41
R4 21 58 3 51 10 49 12 42 19 60
R5 7 65 14 65 16 65 23 65 5 65

By providing COLUMNS as parameter for the Axis makes the calculation run by the column within a row: 

Run SumByCol(C) = RUNNINGSUM([C], COLUMNS)
Output:
R C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C)
R1 18 18 25 43 2 45 9 54 11 65
R2 4 4 6 10 13 23 20 43 22 65
R3 15 15 17 32 24 56 1 57 8 65
R4 21 21 3 24 10 34 12 46 19 65
R5 7 7 14 21 16 37 23 60 5 65

By providing ROW COLUMNS as parameter for the Axis makes the calculation run by the column and then continuing the next column (without resetting the value at the end of the column):
Run SumByRow-Col(C) = RUNNINGSUM([C],ROWS COLUMNS)
Output:
R C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C)
R1 18 18 25 90 2 132 9 204 11 271
R2 4 22 6 96 13 145 20 224 22 293
R3 15 37 17 113 24 169 1 225 8 301
R4 21 58 3 116 10 179 12 237 19 320
R5 7 65 14 130 16 195 23 260 5 325

By providing COLUMNS ROWS as parameter for the Axis makes the calculation run by the row and then continuing the next row (without resetting the value at the end of the column):
Run SumByCol-Row = RUNNINGSUM([C],COLUMNS ROWS)
Output:
R C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C) C Run Sum(C)
R1 18 18 25 43 2 45 9 54 11 65
R2 4 69 6 75 13 88 20 108 22 130
R3 15 145 17 162 24 186 1 187 8 195
R4 21 216 3 219 10 229 12 241 19 260
R5 7 267 14 281 16 297 23 320 5 325

Ranking

RANK can be applied independent of the values, or considering the value with ASC or DESC sorting:
RankByRow = RANK(DENSE,ROWS) -- ranking by row independent of values
RankByRow ASC = RANK(DENSE,ROWS, ORDERBY([C],ASC)) -- ranking by row ascending
RankByRow DESC = RANK(DENSE,ROWS, ORDERBY([C], DESC)) -- ranking by row descending
RankByRow-Col ASC = RANK(DENSE,ROWS COLUMNS, ORDERBY([C],ASC)) -- ranking by row columns ascending
RankByRow-Col DESC = RANK(DENSE,ROWS COLUMNS, ORDERBY([C], DESC)) -- ranking by row columns ascending

[RankByRow-Col ASC] matches the actual numbers from the matrix and is thus useful when sorting any numbers accordingly. 

Differences

Differences can be calculated between any of the cells of the matrix:
DiffToPrevByRow = [C] - PREVIOUS([C])  -- difference to previous record
DiffToPrevByRow* = IF(NOT(IsBlank(PREVIOUS([C]))), [C] - PREVIOUS([C])) -- extended difference to previous record
DiffToPrevByRow-Col = [C] - PREVIOUS([C],, ROWS COLUMNS) -- difference to previous record by ROWS COLUMNS
DiffToFirstByRow = [C] - FIRST([C]) -- difference to first record
DiffToPrevByCol = [C] - FIRST([C], COLUMNS) -- difference to previous record COLUMNS

Ranking = RANK(DENSE, ROWS COLUMNS, ORDERBY([C], ASC)) -- ranking of values by ROWS COLUMNS
OffsetDiffToPrevByRow = [C] - calculate([C], OFFSET(1, ROWS, ORDERBY([Ranking],DESC))) -- difference to the previous record by ROW
OffsetDiffToPrevByRow-Col = [C] - calculate([C], OFFSET(1, ROWS COLUMNS, ORDERBY([Ranking],DESC))) -- difference to the previous record by ROW

Ranking has been introduced to facilitate the calculations based on OFFSET.

The other functions [1] can be applied similarly.

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) Power BI: Using visual calculations [preview] (link)

05 April 2024

💎SQL Reloaded: SQL Antipatterns (Part I: JOINs, UNIONs & DISTINCT)

Introduction

SQL antipatterns refer in general to common mistakes made when developing SQL code, though the term can refer also to situations in which even if the code is syntactically and logically correct, it's either suboptimal, unclear or even incorrect. Therefore "mistake" can cover a wide range of scenarios, some that can be ignored, while others need to be addressed accordingly. 

In this post I consider a few antipatterns observed especially in data warehouses (DWHs). Let's look at the below code created to exemplify several scenarios:

-- Products in open orders (initial query)
SELECT DISTINCT ITM.ProductId                                   -- (1) use of DISTINCT
, ITM.ProductNumber
, ITM.Name 
, ITM.Color 
, ITM.Style 
, ITM.Size
FROM Production.Product ITM
    LEFT JOIN (							-- (5) use of JOIN instead of EXISTS
	-- Open Purchase orders 
	SELECT DISTINCT POL.ProductId
	, 'POs' Source                                          -- (7) use columns not needed in output
	FROM Purchasing.PurchaseOrderDetail POL                 
	     LEFT JOIN Purchasing.PurchaseOrderHeader POH       -- (2) use of LEFT JOIN instead of FULL JOIN
		  ON POL.PurchaseOrderID = POH.PurchaseOrderID
	WHERE POH.Status = 1 -- pending 
	UNION					                -- (3) use of UNION
	-- Open Sales orders 
	SELECT DISTINCT SOL.ProductId
	, 'SOs' Source
	FROM Sales.SalesOrderDetail SOL
	    LEFT JOIN Sales.SalesOrderHeader SOH
		  ON SOL.SalesOrderID = SOH.SalesOrderID
	WHERE SOH.Status = 1 -- in process		        -- (4) use of OR instead of IN
	   OR SOH.Status = 2 -- approved
	) DAT
	ON ITM.ProductID = DAT.ProductID
WHERE DAT.ProductID IS NOT NULL 
ORDER BY ITM.ProductNumber			                -- (6) using too many columns in ORDER BY
, ITM.Name 
, ITM.Color 
, ITM.Style 
, ITM.Size

(1) Use of DISTINCT 

DISTINCT is a dirty way to remove the duplicates from a dataset. Sometimes it makes sense to use it to check something fast, though it should be avoided into code intended for a production environment because it can lead to unexpected behavior especially when selecting all the columns using the "*" (SELECT DISTINCT *).

I saw tools and developers adding a DISTINCT in almost each step, independently on whether it was necessary or not. One can thus but wonder whether the DISTINCT was added to fix a bigger issue with the data in the DWH, to remove special duplicates imposed by the logic or just as poor practice. Unfortunately, when it's used frequently, it can become challenging to investigate its use and discover the actual issues from the DWH.

There are several approaches to eliminate DISTINCTs from the code: GROUP BY, ranking functions or upon case also code rewrites.

(2)  Use of LEFT JOIN Instead of FULL JOIN

When refreshing a DWH there can be the case that related data are out of synch. It would be the case of Purchase or Sales orders where the headers and lines are out of synch, headers existing without lines and/or vice versa. A common practice is to use a FULL JOIN and thus to eliminate such exceptions, though there are also entitled uses of a LEFT JOIN. This antipattern resumes however to the cases in which logically should be used a FULL JOIN, though a LEFT JOIN is used instead.

In the above example there are two distinct occurrences of this pattern: the relationship between the header and lines in the inner query, respectively the LEFT JOIN with a NOT NULL constraint in the outer query. The latter use is useful when during testing one wants to see all the Products, though bringing this further into production may rise some eyebrows even if it's not necessarily wrong. Anyway, the database engine should be smart enough to recognize such a scenario. However, for the header vs lines case, upon case the plan generated might be suboptimal. 

One of the best practices when writing SQL queries is to state one's intent clearly in what the logic concerns. Using a LEFT JOIN instead of a FULL JOIN can make people raise questions about the actual need. When the need is not properly documented, some developer may even go and change the joins. There can be for example business cases that are not cover by the current data, but as soon as case appears it will lead to incorrect logic!

Similarly, splitting a piece of logic into two or more steps unnecessarily can create confusion. There can be however also entitled s situations (e.g. query optimization), which ideally should be documented.

(3) Use of UNION

When a UNION is used, the values returned by the first query will be checked against the values of the second query, and thus unnecessary comparisons occur even if they are not needed. This depends also on the business context, which might not be easily to identify from the query (especially when the reviewer doesn't know the business case). 

The misuse of a UNION will not make a big difference when the volume of data is small, though the more data are processed by the query, the higher the impact. 

Besides the proper use of the UNION, there are also situations in which a query rewrite can eliminate the need for a UNION (see the rewritten query below).

(4) use of OR instead of IN

One can occasionally find queries in which a OR was used for 10 to 50 distinct values as in the example above. Even if the database engine generate in both cases the same query plan, it's easier to read and maintain a query that used IN. However, if the number of values go beyond a certain value, other techniques should be used to improve the performance.

The only benefit I see for a OR is to document meaning's values or remove during testing one of the values, especially when the list is a selection coming from the user. Frankly, it's not the appropriate way for documenting logic (even if I'm doing it sometimes in ad-hoc queries).

There's a more extreme scenario in which distinct subqueries are written for each or a set of ORs (e.g. the distinction between open vs closed vs. invoices orders), which can make sense sometimes (e.g. the logic is completely different). Therefore, an antipattern can be dependent also of the context or use case. 

(5) use of JOIN instead of EXISTS

When there are no values returned from the subquery, quite often it makes sense to the EXISTS or not EXISTS operators in the queries (see the rewritten query below). This might not be indicated however for distributed environments like serverless SQL pool in which the distribution of the processing across multiple tasks might benefit when the pieces of the logic distributed don't require heavy reshuffles. 

(6) Using too Many Columns in ORDER BY

The columns specified in an ORDER BY clause need to make sense, otherwise they just add extra burden on the database engine, at least from the perspective of the checks that need to be performed. In the above query, at least the Name doesn't make sense.

It helps also if the columns can use existing indexes, though this depends also on query specifics. 

Another antipattern scenario not exemplified above is the use of ordinals to refer to the columns, which should be avoided in production environments (because the order of the columns can be changed accidentally or even :

-- using ordinals instead of number columns (not recommended)
SELECT ITM.ProductId                                  
, ITM.ProductNumber
, ITM.Name 
, ITM.Color 
, ITM.Style 
, ITM.Size
FROM Production.Product ITM                           
ORDER BY 2, 4, 5, 6

(7) Use Columns Not  Needed in Output

Besides the fact that each column included unnecessarily in the query can increase the size of the data processed (unless the database engine is smart to remove them), there can be also performance issues and/or optimizations involved. For example, if all the other columns are part of a covering index, the database engine might opt for a suboptimal index compared to the case in which the unnecessary columns are removed. 

Conversely, some columns are helpful to troubleshoot the logic (and that's why the Source column was considered) even if they aren't considered in the final output or the logic. It doesn't make sense to bring the query version with the respective fields into production, even if this would mean to have maybe a second version of the query used only for troubleshooting needs. Commenting the unnecessary columns could be a better choice, even if it's not recommended in general as too many such comments can obfuscate the case. 

Rewriting the Query

With the above input the query can be rewritten as follows:

-- Products in open orders (modified query)
SELECT ITM.ProductId                                  
, ITM.ProductNumber
, ITM.Name 
, ITM.Color 
, ITM.Style 
, ITM.Size
FROM Production.Product ITM
WHERE EXISTS (										            
	-- Open Purchase orders 
	SELECT POL.ProductId
	FROM Purchasing.PurchaseOrderDetail POL                 
	     JOIN Purchasing.PurchaseOrderHeader POH      
		  ON POL.PurchaseOrderID = POH.PurchaseOrderID
	WHERE POH.Status = 1 
	  AND ITM.ProductID = POL.ProductID
	)
 OR EXISTS (				                                    
	-- Open Sales orders 
	SELECT SOL.ProductId
	FROM Sales.SalesOrderDetail SOL
	     JOIN Sales.SalesOrderHeader SOH
		  ON SOL.SalesOrderID = SOH.SalesOrderID
	WHERE SOH.Status IN (1, 2)
	  AND ITM.ProductID = SOL.ProductID
	)	                           
ORDER BY ITM.ProductNumber			                           
, ITM.Color 
, ITM.Style 
, ITM.Size

Please note that in general to each rule there are also exceptions which should be considered against one's common sense. When the benefit of addressing an antipattern is neglectable compared with the effort involved and the logic doesn't create any issues, probably it's better to let the code as it. One can still reconsider the antipatterns later with the next refactoring opportunity. 

There are zealous data professionals who treat minor inconveniences (e.g. not using upper case for SQL reserved words, alternate code formatting, alternative writing of words, especially function names, different indentation, the use of "--" for commenting within a query, etc.) as antipatterns. Use your common sense and evaluate the effort against the benefits or risks and, not less important, be patient with others' mistakes!

Happy coding!

Previous Post <<||>> Next Post

19 December 2023

💎💫SQL Reloaded: Blocked Products in Dynamics 365 F&O

Besides listing the products released by Legal entity (see previous post), it's useful to know whether they were blocked for Inventory, Sales or Procurement. This is quite easy when doing it over the data entity:

-- check status via the data entity
SELECT PSO.ItemNumber 
, PSO.DataAreaId 
, PSO.IsSalesProcessingStopped
, PSO.IsInventoryProcessingStopped 
, PSO.IsProcurementProcessingStopped
FROM dbo.InventProductSpecificOrderSettingsV3Entity PSO
ORDER BY PSO.ItemNumber 
, PSO.DataAreaId

However, when the data entity is not available, the logic gets a bit more complex because the data are stored in 3 different tables: InventItemInventSetup, InventItemPurchSetup, respectively InventItemSalesSetup. Here's the piece of logic used to get the various statuses in AX 2009 (of course, without the JOINs on Partition) and it works also in Dynamics 365 F&O:

/* Product Specific Order Settings via JOINs */
SELECT ITM.DataAreaId 
, ITM.ItemId 
, IPS.Stopped IsProcurementProcessingStopped
, ILS.Stopped IsInventoryProcessingStopped
, ISS.Stopped IsSalesProcessingStopped
FROM dbo.InventTable ITM
     LEFT JOIN dbo.InventItemPurchSetup IPS
       ON ITM.ItemID = IPS.ItemId
      AND ITM.DataAreaId = IPS.DataAreaId 
      AND ITM.Partition = IPS.Partition
      AND IPS.InventDimId = 'AllBlank'
     LEFT JOIN dbo.InventItemSalesSetup ISS
       ON ITM.ItemID = ISS.ItemId
      AND ITM.DataAreaId = ISS.DataAreaId 
      AND ITM.Partition = ISS.Partition
      AND ISS.InventDimId = 'AllBlank'
     LEFT JOIN dbo.InventItemInventSetup ILS
       ON ITM.ItemID = ILS.ItemId
      AND ITM.DataAreaId = ILS.DataAreaId 
      AND ITM.Partition = ILS.Partition
      AND ILS.InventDimId = 'AllBlank'
ORDER BY ITM.ItemId
,  ITM.DataAreaId 

The constraint on InventDimId is necessary because there can be multiple records for the Product and Legal entity combination. 

Alternatively, one can use UNIONs instead of JOINs and include the logic into a view to simplify the final query (the query was written to test the behavior in a distributed environment like serverless SQL pool):

-- create the view
CREATE OR ALTER VIEW TDM.vProductSpecificOrderSettings
AS
/* Product Specific Order Settings via UNIONs */
SELECT IST.DataAreaId 
, IST.ItemId 
, IST.Partition 
, max(IST.IsInventoryProcessingStopped) IsInventoryProcessingStopped
, max(IST.IsSalesProcessingStopped) IsSalesProcessingStopped
, max(IST.IsProcurementProcessingStopped) IsProcurementProcessingStopped
FROM (
	-- inventory
	SELECT IIS.DataAreaId 
	, IIS.ItemId 
	, IIS.Partition
	, IIS.Stopped IsInventoryProcessingStopped
	, 0 IsSalesProcessingStopped
	, 0 IsProcurementProcessingStopped
	FROM dbo.InventItemInventSetup IIS
	WHERE IIS.InventDimId = 'AllBlank'
	UNION ALL
	-- purchasing
	SELECT IPS.DataAreaId 
	, IPS.ItemId 
	, IPS.Partition 
	, 0
	, 0
	, IPS.Stopped
	FROM dbo.InventItemPurchSetup IPS
	WHERE IPS.InventDimId = 'AllBlank'
	UNION ALL
	-- sales
	SELECT ISS.DataAreaId 
	, ISS.ItemId 
	, ISS.Partition 
	, 0
	, ISS.Stopped
	, 0
	FROM dbo.InventItemSalesSetup ISS
	WHERE ISS.InventDimId = 'AllBlank'
 ) IST
 GROUP BY IST.DataAreaId 
, IST.ItemId 
, IST.Partition 

/* Product Specific Order Settings via UNIONs */
SELECT ITM.DataAreaId 
, ITM.ItemId 
, PSO.IsInventoryProcessingStopped
, PSO.IsSalesProcessingStopped
, PSO.IsProcurementProcessingStopped
FROM dbo.InventTable ITM
     LEFT JOIN TDM.vProductSpecificOrderSettings PSO
	   ON ITM.ItemId = PSO.ItemId 
	  AND ITM.DataAreaId = PSO.DataAreaId 
	  AND ITM.Partition = PSO.Partition
ORDER BY ITM.ItemId 
, ITM.DataAreaId 

At least for the database used for testing on an SQL Server 2022 instance, the last query has slightly lower estimated subtree cost and memory grant than the previous one. It's also interesting that the data entity-based query outperforms the other two queries. 

And here's the combined query from this and previous post:

-- Legal Entities vs Products incl. product order settings
SELECT DAT.Id DataAreaId 
, PRD.DisplayProductNumber ItemId 
, CASE WHEN ITM.DataAreaId IS NOT NULL THEN 1 ELSE 0 END IsReleased
, CASE WHEN ITM.CreatedDatetime <> ITM.ModifiedDateTime THEN 1 ELSE 0 END IsModified
, PSO.IsInventoryProcessingStopped
, PSO.IsSalesProcessingStopped
, PSO.IsProcurementProcessingStopped
FROM dbo.DataArea DAT
     CROSS JOIN dbo.EcoResProduct PRD
	 LEFT JOIN dbo.InventTable ITM
	   ON DAT.Id = ITM.DataAreaId 
	  AND PRD.DisplayProductNumber = ITM.ItemId
	  AND PRD.Partition = ITM.Partition
          LEFT JOIN TDM.vProductSpecificOrderSettings PSO
	        ON ITM.ItemId = PSO.ItemId 
	       AND ITM.DataAreaId = PSO.DataAreaId 
	       AND ITM.Partition = PSO.Partition
WHERE DAT.Id <> 'DAT'
   AND PRD.DisplayProductNumber = 'D0001'
ORDER BY PRD.DisplayProductNumber
, DAT.Id

Happy coding!

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.