Showing posts with label errors. Show all posts
Showing posts with label errors. Show all posts

13 September 2025

📉Graphical Representation: Mistakes (Just the Quotes)

"Many people imagine that graphic charts cannot be understood except by expert mathematicians who have devoted years of study to the subject. This is a mistaken idea, and if instead of passing over charts as if they were something beyond their comprehension more people would make an effort to read them, much valuable time would be saved. It is true that some charts covering technical data are difficult even for an expert mathematician to understand, but this is more often the fault of the person preparing the charts than of the system." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Readers of statistical diagrams should not be required to compare magnitudes in more than one dimension. Visual comparisons of areas are particularly inaccurate and should not be necessary in reading any statistical graphical diagram." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)

"The art of using the language of figures correctly is not to be over-impressed by the apparent air of accuracy, and yet to be able to take account of error and inaccuracy in such a way as to know when, and when not, to use the figures. This is a matter of skill, judgment, and experience, and there are no rules and short cuts in acquiring this expertness." (Ely Devons, "Essays in Economics", 1961)

"Then there is the audience: will those looking at the new designs be confused? Some of the designs are selfexplanatory, as in the case of the range-frame. The dot-dash-plot is more difficult, although it still shows all the standard information found in the scatterplot. Nothing is lost to those puzzled by the frame of dashes, and something is gained by those who do understand. Moreover, it is a frequent mistake in thinking about statistical graphics to underestimate the audience. Instead, why not assume that if you understand it, most other readers will, too? Graphics should be as intelligent and sophisticated as the accompanying text." (Edward R Tufte, "Data-Ink Maximization and Graphical Design", Oikos Vol. 58 (2), 1990)

"Exploratory regression methods attempt to reveal unexpected patterns, so they are ideal for a first look at the data. Unlike other regression techniques, they do not require that we specify a particular model beforehand. Thus exploratory techniques warn against mistakenly fitting a linear model when the relation is curved, a waxing curve when the relation is S-shaped, and so forth." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)

"[…] an outlier is an observation that lies an 'abnormal' distance from other values in a batch of data. There are two possible explanations for the occurrence of an outlier. One is that this happens to be a rare but valid data item that is either extremely large or extremely small. The other is that it isa mistake – maybe due to a measuring or recording error." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Histograms are often mistaken for bar charts but there are important differences. Histograms show distribution through the frequency of quantitative values (y axis) against defined intervals of quantitative values(x axis). By contrast, bar charts facilitate comparison of categorical values. One of the distinguishing features of a histogram is the lack of gaps between the bars [...]" (Andy Kirk, "Data Visualization: A successful design process", 2012)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Most data is linked to time in some way in that it might be a time series, or it’s a snapshot from a specific period. In both cases, you have to know when the data was collected. An estimate made decades ago does not equate to one in the present. This seems obvious, but it’s a common mistake to take old data and pass it off as new because it’s what’s available. Things change, people change, and places change, and so naturally, data changes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"It’s a mistake to think of data and data visualizations as static terms. They are the very antitheses of stasis." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Most discussions of decision making assume that only senior executives make decisions or that only senior executives' decisions matter. This is a dangerous mistake. Decisions are made at every level of the organization, beginning with individual professional contributors and frontline supervisors. These apparently low-level decisions are extremely important in a knowledge-based organization." (Zach Gemignani et al, "Data Fluency", 2014)

"The most common mistake in ineffective data products is an inability to make difficult decisions about what information is most important. [...] Often information gets included in data products for reasons that are superfluous to the purpose, audience, and message - reasons that cater the product to someone influential or use information that has been included historically. The bar should be higher." (Zach Gemignani et al, "Data Fluency", 2014)

"Sometimes bar charts are avoided because they are common. This is a mistake. Rather, bar charts should be leveraged because they are common, as this means less of a learning curve for your audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"There are two kinds of mistakes that an inappropriate inductive bias can lead to: underfitting and overfitting. Underfitting occurs when the prediction model selected by the algorithm is too simplistic to represent the underlying relationship in the dataset between the descriptive features and the target feature. Overfitting, by contrast, occurs when the prediction model selected by the algorithm is so complex that the model fits to the dataset too closely and becomes sensitive to noise in the data."(John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"The expressiveness principle dictates that the visual encoding should express all of, and only, the information in the dataset attributes. The most fundamental expression of this principle is that ordered data should be shown in a way that our perceptual system intrinsically senses as ordered. Conversely, unordered data should not be shown in a way that perceptually implies an ordering that does not exist. Violating this principle is a common beginner’s mistake in vis. " (Tamara Munzner, "Visualization Analysis and Design", 2014)

"A common misconception is that data scientists don’t need visualizations. This attitude is not only inaccurate: it is very dangerous. Most machine learning algorithms are not inherently visual, but it is very easy to misinterpret their outputs if you look only at the numbers; there is no substitute for the human eye when it comes to making intuitive sense of things." (Field Cady, "The Data Science Handbook", 2017)

05 August 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 72: When Machines Acknowledge Their Boundaries: How AI Can Recognize Its Own Limitations)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blogpost of 600 words on how AI can recognize its own limitations"

Introduction

Artificial Intelligence (AI) dazzles with its versatility - from composing symphonies to diagnosing diseases - but what happens when machines encounter tasks beyond their reach? Can AI recognize its own limitations? The answer, intriguingly, is yes. Not in the human sense of self-reflection, but through engineered mechanisms that simulate self-awareness.

What Does "Recognizing Limitations" Mean for AI?

In human terms, recognizing a limitation means knowing what we can’t do and adjusting our behavior accordingly. It involves:

  • Self-awareness
  • Emotional intelligence
  • Experience-based introspection

AI doesn’t possess any of these. However, it can still "recognize" limits through:

  • Pre-programmed constraints
  • Statistical confidence levels
  • Self-monitoring systems
  • Language cues that express uncertainty

While the recognition isn’t conscious, it’s functionally effective - and surprisingly persuasive in conversation.

Built-In Boundaries

Modern AI models come with explicit design guardrails:

  • Content filters prevent engagement with harmful or sensitive topics.
  • Knowledge boundaries are maintained by restricting access to certain real-time data (e.g., financial predictions, medical diagnostics).
  • Model constraints define what the AI should never claim or fabricate, such as pretending to be sentient or giving legal advice.

These boundaries act as digital ethics - code-level boundaries that help AI "know" when to decline or deflect.

Confidence Estimation and Reasoning

AI systems often attach confidence scores to their outputs:

  • When solving math problems, diagnosing images, or retrieving factual data, the system evaluates how likely its answer is correct.
  • If confidence falls below a threshold, it may respond with disclaimers like:
  • This isn’t emotion-driven humility - it’s probability-based caution. Yet to users, it feels like genuine thoughtfulness.

Language That Mirrors Self-Awareness

One of the most powerful illusions of limitation recognition lies in language. Advanced models can say:

  • "I don’t have personal beliefs."
  • "That information is beyond my current knowledge."
  • "I can’t access real-time data."

These phrases aren’t true reflections of awareness. They’re statistical echoes of human disclaimers, trained from billions of conversational examples. The AI doesn’t "know" it’s limited - but it has learned that people expect limitations to be acknowledged, and adapts accordingly.

Error Detection and Feedback Loops

Some AI systems have self-monitoring capabilities:

  • They compare outputs against known ground truths.
  • They flag inconsistencies or hallucinations in generated text.
  • They correct or retract inaccurate answers based on post-processing feedback.

Think of it as a digital conscience - not moral, but methodical. These loops mimic reflection: a kind of pseudo-reasoning where AI revises itself based on performance metrics.

Recognizing Limitations ≠ Understanding Them

To be clear: AI doesn’t understand its limitations. It doesn’t feel frustration or doubt. But it can:

  • Identify failure patterns
  • Communicate constraints
  • Avoid tasks outside defined parameters

This engineered humility makes AI safer, more trustworthy, and easier to collaborate with.

Why This Matters

When AI "recognizes" its limitations, we get:

  • More ethical interactions (e.g., declining bias-prone questions)
  • Greater user trust (knowing the machine won’t pretend it knows everything)
  • Improved transparency in decision-making and data handling

It also compels us to ask deeper questions: If machines can convincingly simulate self-awareness, how do we differentiate introspection from imitation?

Final Thought

AI doesn’t ponder its limits - it performs them. But in that performance, it holds up a mirror not to itself, but to us. Through design, language, and feedback, we’ve taught machines to "know" their bounds - and in doing so, we remind ourselves of our own.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

19 May 2025

#️⃣Software Engineering: Mea Culpa (Part VIII: A Look Beyond)

Software Engineering Series
Software Engineering Series

With AI on the verge, blogging and bloggers can easily become obsolete. Why bother navigating through the many blogs to get a broader perspective when the same can be obtained with AI? Just type in a prompt of the type "write a blogpost of 600 words on the importance of AI in society" and Copilot or any other similar AI agent will provide you an answer that may look much better than the first draft of most of the bloggers out there! It doesn't matter whether the text follows a well-articulated idea, a personal perspective or something creative! One gets an acceptable answer with a minimum of effort and that's what matters for many.

The results tend to increase in complexity the more models are assembled together, respectively the more uncontrolled are the experiments. Moreover, solutions that tend to work aren't necessarily optimal. Machines can't offer instant enlightenment or anything close to it. Though they have an incomparable processing power of retrieval, association, aggregation, segregation and/or iteration, which coupled with the vast amount of data, information and knowledge can generate anything in just a matter of seconds. Probably, the only area in which humans can compete with machines is creativity and wisdom, though how many will be able to leverage these at scale? Probably, machines have some characteristics that can be associated with these intrinsic human characteristics, though usually more likely the brute computational power will prevail.

At Microsoft Build, Satya Nadella mentioned that foundry encompasses already more than 1900 supported models. In theory, one can still evaluate and test such models adequately. What will happen when the scale increases with a few orders of magnitude? What will happen when for each person there are one or more personalized AI models? AI can help in many areas by generating and evaluating rapidly many plausible alternatives, though as soon the models deal with some kind of processing randomization, the chances for errors increase exponentially (at least in theory).

It's enough for one or more hallucinations or other unexpected behavior to lead to more unexpected behavior. No matter how well a model was tested, as long as there's no stable predictable mathematical model behind it, the chances for something to go wrong increase with the number of inputs, parameters, uses, or changes of context the model deals with. Unfortunately, all these aspects are seldom documented. It's not like using a formula and you know that given a set of inputs and operations, the result is the same. The evolving nature of such models makes them unpredictable in the long term. Therefore, there must always be a way to observe the changes occurring in models.

One of the important questions is how many errors can we afford in such models? How long it takes until errors impact each other to create effects comparable with a tornado. And what if the tornado increases in magnitude to the degree that it wrecks everything that crosses its path? What if multiple tornadoes join forces? How many tornadoes can destroy a field, a country or a continent? How many or big must be the tornadoes to trigger a warning?

Science-Fiction authors love to create apocalyptic scenarios, and all happens in just a few steps, respectively chapters. In nature, usually it takes many orders of magnitude to generate unpredictable behavior. But, as nature often reveals, unpredictable behavior does happen, probably more often than we expect and wish for. The more we are poking the bear, the higher the chances for something unexpected to happen! Do we really want this? What will be the price we must pay for progress?

Previous Post <<||>> Next Post

06 January 2025

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part VII: Things That Don't Work) 🆕

Microsoft does relatively a good job in documenting what doesn't work in Microsoft Fabric's SQL Databases. There's a good overview available already in the documentation, though beyond this the current post lists my finding while testing the previously written code on this blog,

USE Database

The standard syntax allows to change via USE the database context to the specified database or database snapshot. Unfortunately, this syntax doesn't seem to be supported currently and unfortunately many scripts seem to abuse of it. Thus, the following line of code throws an error:

-- changing the context
USE master;
GO
USE tempdb;

"Msg 40508, Level 16, State 1, Line 1, USE statement is not supported to switch between databases. Use a new connection to connect to a different database"

However, one can use the 3-part naming convention to reference the various objects:

-- sys metadata - retrieving the database files

SELECT *
FROM tempdb.sys.database_files dbf
ORDER BY name;

Even if the tempdb is not listed in the sys.databases table, it's still available for querying, which can prove helpful for troubleshooting. 

DBCC commands 

The documentation warns that some DBCC commands won't work, though in some cases there are also alternatives. For example:

-- clearing the procedure cache via DBCC
DBCC FREEPROCCACHE;
Output:
"Msg 2571, Level 14, State 9, Line 1, User '<user>' does not have permission to run DBCC freeproccache."

Alternatively, one can use the following command, which seems to work:

-- clearing the procedure cash via ALTER
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

CHECKDB, which checks the logical and physical integrity of all the objects in the specified database, can't be used as well:
 
-- Checking the logical and physical integrity of a database
DBCC CHECKDB();
Output:
"Msg 916, Level 14, State 2, Line 1, The server principal "..." is not able to access the database "..." under the current security context."
The same error message is received for CHECKTABLE, utility which checks the integrity of all the pages and structures that make up the table (or indexed view):

-- checking a table's integrity
DBCC CHECKTABLE ('SalesLT.Address');
Output:
"Msg 916, Level 14, State 2, Line 2, The server principal "..." is not able to access the database "..." under the current security context."
A similar error messages is received for SQLPERF, which provides transaction log space usage statistics for all databases:

-- retrieving the LOGSPACE information for all databases
DBCC SQLPERF (LOGSPACE);
Output: 
"Msg 297, Level 16, State 10, Line 1, The user does not have permission to perform this action."
There are however DBCC commands like SHOW_STATISTICS or SHRINKDATABASE which do work. 
 
-- current query optimization statistics
DBCC SHOW_STATISTICS('SalesLT.Address','PK_Address_AddressID');
Output:
Name Updated Rows Rows Sampled Steps Density Average key length String Index Filter Expression Unfiltered Rows Persisted Sample Percent
PK_Address_AddressID Dec 21 2024 3:02AM 450 450 197 1 4 NO 450 0

SHRINKDATABASE shrinks the size of the data and log files in the specified database:

-- shrinking database
DBCC SHRINKDATABASE([AdventureWorks01-...]) WITH NO_INFOMSGS;

Update 29-Jan-2025: According to an answer from Ask the Expert session on Fabric Database [3], Microsoft seems to be working in bringing more DBCC features to SQL databases.

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) SQL Server: USE <database> [link]
[2] Microsoft Learn (2024) Database console commands [link]
[3] Microsoft Reactor (2025) Ask The Expert - Fabric Edition - Fabric Databases [link]

04 April 2021

💼Project Management: Lean Management (Part I: Between Value and Waste I - An Introduction)

 Mismanagement

Independently on whether Lean Management is considered in the context of Manufacturing, Software Development (SD), Project Management (PM) or any other business-related areas, there are three fundamental business concepts on which the whole scaffolding of the Lean philosophies is built upon, namely the ones of value, value stream and waste. 

From an economic standpoint, value refers to the monetary worth of a product, asset or service (further referred as product) to an organization, while from a qualitative perspective, it refers to the perceived benefit associated with its usage. The value is thus reflected in the costs associated with a product’s delivery (producer’s perspective), respectively the price paid on acquiring it and the degree to which the product can fulfill a demand (customer’s perspective).

Without diving too deep into theory of product valuation, the challenges revolve around reducing the costs associated with a product’s delivery, respectively selling it to a price the customer is willing to pay for, typically to address a given set of needs. Moreover, the customer is willing to pay only for the functions that satisfy the needs a product is thought to cover. From this friction of opposing driving forces, a product is designed and valued.

The value stream is the sequence of activities (also steps or processes) needed to deliver a product to customers. This formulation includes value-added and non-value-added activities, internal and external customers, respectively covers the full lifecycle of products and/or services in whatever form it occurs, either if is or not perceived by the customers.  

Waste is any activity that consumes resources but creates no value for the customers or, generally, for the stakeholders, be it internal or external. The waste is typically associated with the non-added value activities, activities that don’t produce value for stakeholders, and can increase directly or indirectly the costs of products especially when no attention is given to it and/or not recognized as such. Therefore, eliminating the waste can have an important impact on products’ costs and become one of the goals of Lean Management. Moreover, eliminating the waste is an incremental process that, when put in the context of continuous improvement, can lead to processes redesign and re-engineering.

Taiichi Ohno, the ‘father’ of the Toyota Production System (TPS), originally identified seven forms of waste (Japanese: muda): overproduction, waiting, transporting, inappropriate processing, unnecessary inventory, unnecessary/excess motion, and defects. Within the context of SD and PM, Tom and Marry Poppendieck [1] translated the types of wastes in concepts closer to the language of software developers: partially done work, extra processes, extra features, task switching, waiting, motion and, of course, defects. To this list were added later further types of waste associated with resources, confusion and work conditions.

Defects in form of errors and bugs, ineffective communication, rework and overwork, waiting, repetitive activities like handoffs or even unnecessary meetings are usually the visible part of products and projects and important from the perspective of stakeholders, which in extremis can become sensitive when their volume increases out of proportion.

Unfortunately, lurking in the deep waters of projects and wrecking everything that stands in their way are the other forms of waste less perceivable from stakeholders’ side: unclear requirements/goals, code not released or not tested, specifications not implemented, scrapped code, overutilized/underutilized resources, bureaucracy, suboptimal processes, unnecessary optimization, searching for information, mismanagement, task switching, improper work condition, confusion, to mention just the important activities associated to waste.

Through their elusive nature, independently on whether they are or not visible to stakeholders, they all impact the costs of projects and products when the proper attention is not given to them and not handled accordingly.

Lean Management - The Waste Iceberg

References:
[1] Mary Poppendieck & Tom Poppendieck (2003) Lean Software Development: An Agile Toolkit, Addison Wesley, ISBN: 0-321-15078-3

29 April 2019

🗄️Data Management: Data Integration (Part I: From Disintegration to Integration)

Data Management
Data Management Series

No matter how tight the integration between the various systems or processes there will be always gaps that need to be addressed in one way or another. The problems are in general caused by design errors rooted in the complexity of the logic from the integration layer or from the systems integrated. The errors can range from missing or incorrect validation rules, mappings and parameters to data quality issues.

A unidirectional integration involves distributing data from one system (aka publisher) to one or more systems (aka subscribers), while in bidirectional integrations systems can act as publishers and subscribers, resulting thus complex data flows with multiple endpoints. In simplest integrations the records flow one-to-one between systems, though more complex scenarios can involve logic based on business rules, mappings and other type of transformations. The challenge is to reflect the states as needed by the system with minimal involvement from the users.

Typically, it falls in application/process owners or key users’ responsibilities to make sure that the integration works smoothly. When the integration makes use of interface or staging tables they can be used as starting point for the troubleshooting, however even then the troubleshooting can be troublesome and involve a considerable manual effort. When possible the data can be exported manually from the various systems and matched in Excel or similar solutions. This leads often to personal or departmental solutions hard to maintain, control and support.

A better approach is to automatize the process by importing the data from the integrated systems at regular points in time into the same database (much like in a data warehouse), model the entities and the needed logic in there, and report the differences. Even if this approach involves a small investment in the beginning and some optimization in logic or performance over time, it can become a useful tool for troubleshooting the differences. Such solutions can be used successfully in multiple integration scenarios (e.g. web shop or ERP integrations).

A set of reports for each entity can help identify the differences between the various entities. Starting from the reported differences the users can identify, categorize and devise specific countermeasures for the various issues. The best time to have such a solution is shortly before or during UAT. This would allow to make sure that the integration layer really works, and helps correcting the issues as long they still have a small impact on the systems. Some integration issues might even lead to a postponement of the Go-Live. The second best time is during the time the first important issues were found, as the issues can be used as support for a Business Case for implementing this type of solutions.

In general, it’s recommended to fix the problems in the integration layer and use the reports only for troubleshooting and for assuring that the integration runs smoothly. There are however situations in which the integration problems can’t be fixed without creating more issues. It’s the case in which multiple systems are involved and integrated over an integration bus.

One extreme approach, not advisable though, is to build a second integration to correct the issues of the first. This solution might work in theory however there’s the risk of multiplying the issues is really high and the complexity of troubleshooting increases with the degree of dependency between the two integrations. It would be more advisable to rebuild the integration anew, however also this approach has its advantages and disadvantages.

Bottom line is that integration issues should be addressed while they are small and that an automated solution for comparing the data can help in the process

21 April 2019

#️⃣Software Engineering: Programming (Part VIII: Pair Programming)

Software Engineering
Software Engineering Series

“Two heads are better than one” – a proverb whose wisdom is embraced today in the various forms of harnessing the collective intelligence. The use of groups in problem solving is based on principles like “the collective is more than the sum of its individuals” or that “the crowds are better on average at estimations than the experts”. All well and good, based on the rationality of the same proverb has been advanced the idea of having two developers working together on the same piece of code – one doing the programming while the other looks over the shoulder as a observer or navigator (whatever that means), reviewing each line of code as it is written, strategizing or simply being there.

This approach is known as pair programming and considered as an agile software development technique, adhering thus to the agile principles (see the agile manifesto). Beyond some intangible benefits, its intent is to reduce the volume of defects in software and thus ensure an acceptable quality of the deliverables. It’s also an extreme approach of the pear review concept.
Without considering whether pair programming adheres to the agile principles, the concept has several big loopholes. The first time I read about pair programming it took me some time to digest the idea – I was asking myself what programmer will do that on a daily basis, watching as other programmers code or being watched while coding, each line of code being followed by questions, affirmative or negative nodding… Beyond their statute of being lone wolves, programmers can cooperate when the tasks ahead requires it, however to ask a programmer watch actively as others program it won’t work on the long run!

Talking from my own experience as programmer and of a professional working together with other programmers, I know that a programmer sees each task as a challenge, a way of learning, of reaching beyond his own condition. Programming is a way of living, with its pluses and minuses.
Moreover, the complexity of the tasks doesn’t resume at handling the programming language but of resolving the right problem. Solving the right problem is not something that can one overcome with brute force but with intelligence. If using the programming language is the challenge then the problem lies somewhere else and other countermeasures must be taken!

Some studies have identified that the use of pair programming led to a reduction of defects in software, however the numbers are misleading as long they compare apples with pears. To statistically conclude that one method is better than the other means doing the same experiment with the different methods using a representative population. Unless one addressees the requirements of statistics the numbers advanced are just fiction!

Just think again about the main premise! One doubles the expenditure for a theoretical reduction of the defects?! Actually, it's more than double considering that different types of communication takes place. Without a proven basis the effort can be somewhere between 2.2 and 2.5 and for an average project this can be a lot! The costs might be bearable in situations in which the labor is cheap, however programmers’ cooperation is a must.

The whole concept of pair programming seems like a bogus idea, just like two drivers driving the same car! This approach might work when the difference in experience and skills between developers is considerable, that being met in universities or apprenticeship environments, in which the accent is put on learning and forming. It might work on handling complex tasks as some adepts declare, however even then is less likely that the average programmer will willingly do it!


07 January 2019

🤝Governance: Accountability (Just the Quotes)

"To hold a group or individual accountable for activities of any kind without assigning to him or them the necessary authority to discharge that responsibility is manifestly both unsatisfactory and inequitable. It is of great Importance to smooth working that at all levels authority and responsibility should be coterminous and coequal." (Lyndall Urwick, "Dynamic Administration", 1942)

"Complete accountability is established and enforced throughout; and if there there is any error committed, it will be discovered on a comparison with the books and can be traced to its source." (Alfred D Chandler Jr, "The Visible Hand", 1977)

"If responsibility - and particularly accountability - is most obviously upwards, moral responsibility also reaches downwards. The commander has a responsibility to those whom he commands. To forget this is to vitiate personal integrity and the ethical validity of the system." (Roger L Shinn, "Military Ethics", 1987)

"Perhaps nothing in our society is more needed for those in positions of authority than accountability." (Larry Burkett, "Business By The Book: Complete Guide of Biblical Principles for the Workplace", 1990)

"Corporate governance is concerned with holding the balance between economic and social goals and between individual and communal goals. The governance framework is there to encourage the efficient use of resources and equally to require accountability for the stewardship of those resources. The aim is to align as nearly as possible the interests of individuals, corporations and society." (Dominic Cadbury, "UK, Commission Report: Corporate Governance", 1992)

"Accountability is essential to personal growth, as well as team growth. How can you improve if you're never wrong? If you don't admit a mistake and take responsibility for it, you're bound to make the same one again." (Pat Summitt, "Reach for the Summit", 1999)

"Responsibility equals accountability equals ownership. And a sense of ownership is the most powerful weapon a team or organization can have." (Pat Summitt, "Reach for the Summit", 1999)

"There's not a chance we'll reach our full potential until we stop blaming each other and start practicing personal accountability." (John G Miller, "QBQ!: The Question Behind the Question", 2001)

"Democracy is not about trust; it is about distrust. It is about accountability, exposure, open debate, critical challenge, and popular input and feedback from the citizenry." (Michael Parenti, "Superpatriotism", 2004)

"No individual can achieve worthy goals without accepting accountability for his or her own actions." (Dan Miller, "No More Dreaded Mondays", 2008)

"In putting together your standards, remember that it is essential to involve your entire team. Standards are not rules issued by the boss; they are a collective identity. Remember, standards are the things that you do all the time and the things for which you hold one another accountable." (Mike Krzyzewski, "The Gold Standard: Building a World-Class Team", 2009)

"Nobody can do everything well, so learn how to delegate responsibility to other winners and then hold them accountable for their decisions." (George Foreman, "Knockout Entrepreneur: My Ten-Count Strategy for Winning at Business", 2010)

"Failing to hold someone accountable is ultimately an act of selfishness." (Patrick Lencioni, "The Advantage, Enhanced Edition: Why Organizational Health Trumps Everything Else In Business", 2012)

"We cannot have a just society that applies the principle of accountability to the powerless and the principle of forgiveness to the powerful. This is the America in which we currently reside." (Chris Hayes, "Twilight of the Elites: America After Meritocracy", 2012)

"Artificial intelligence is a concept that obscures accountability. Our problem is not machines acting like humans - it's humans acting like machines." (John Twelve Hawks, "Spark", 2014)

"In order to cultivate a culture of accountability, first it is essential to assign it clearly. People ought to clearly know what they are accountable for before they can be held to it. This goes beyond assigning key responsibility areas (KRAs). To be accountable for an outcome, we need authority for making decisions, not just responsibility for execution. It is tempting to refrain from the tricky exercise of explicitly assigning accountability. Executives often hope that their reports will figure it out. Unfortunately, this is easier said than done." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Some hierarchy is essential for the effective functioning of an organization. Eliminating hierarchy has the frequent side effect of slowing down decision making and diffusing accountability." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Accountability makes no sense when it undermines the larger goals of education." (Diane Ravitch, "The Death and Life of the Great American School System", 2016)

"[...] high-accountability teams are characterized by having members that are willing and able to resolve issues within the team. They take responsibility for their own actions and hold each other accountable. They take ownership of resolving disputes and feel empowered to do so without intervention from others. They learn quickly by identifying issues and solutions together, adopting better patterns over time. They are able to work without delay because they don’t need anyone else to resolve problems. Their managers are able to work more strategically without being bogged down by day-to-day conflict resolution." (Morgan Evans, "Engineering Manager's Handbook", 2023)

"In a workplace setting, accountability is the willingness to take responsibility for one’s actions and their outcomes. Accountable team members take ownership of their work, admit their mistakes, and are willing to hold each other accountable as peers." (Morgan Evans, "Engineering Manager's Handbook", 2023)

"Low-accountability teams can be recognized based on their tendency to shift blame, avoid addressing issues within the team, and escalate most problems to their manager. In low-accountability teams, it is difficult to determine the root of problems, failures are met with apathy, and managers have to spend much of their time settling disputes and addressing performance. Members of low-accountability teams believe it is not their role to resolve disputes and instead shift that responsibility up to the manager, waiting for further direction. These teams fall into conflict and avoidance deadlocks, unable to move quickly because they cannot resolve issues within the team."

25 December 2018

🔭Data Science: Trial and Error (Just the Quotes)

"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"We know the laws of trial and error, of large numbers and probabilities. We know that these laws are part of the mathematical and mechanical fabric of the universe, and that they are also at play in biological processes. But, in the name of the experimental method and out of our poor knowledge, are we really entitled to claim that everything happens by chance, to the exclusion of all other possibilities?" (Albert Claude, [Nobel Prize Lecture], 1974)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "All Life is Problem Solving", 1999) 

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

"Technology is the result of antifragility, exploited by risk-takers in the form of tinkering and trial and error, with nerd-driven design confined to the backstage." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"We can simplify the relationships between fragility, errors, and antifragility as follows. When you are fragile, you depend on things following the exact planned course, with as little deviation as possible - for deviations are more harmful than helpful. This is why the fragile needs to be very predictive in its approach, and, conversely, predictive systems cause fragility. When you want deviations, and you don’t care about the possible dispersion of outcomes that the future can bring, since most will be helpful, you are antifragile. Further, the random element in trial and error is not quite random, if it is carried out rationally, using error as a source of information. If every trial provides you with information about what does not work, you start zooming in on a solution - so every attempt becomes more valuable, more like an expense than an error. And of course you make discoveries along the way." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"Another crowning achievement of deep learning is its extension to the domain of reinforcement learning. In the context of reinforcement learning, an autonomous agent must learn to perform a task by trial and error, without any guidance from the human operator." (Ian Goodfellow et al, "Deep Learning", 2015)

"A learning algorithm for a robot or a software agent to take actions in an environment so as to maximize the sum of rewards through trial and error." (Tomohiro Yamaguchi et al, "Analyzing the Goal-Finding Process of Human Learning With the Reflection Subtask", 2018)

"Reinforcement learning is also a subset of AI algorithms which creates independent, self-learning systems through trial and error. Any positive action is assigned a reward and any negative action would result in a punishment. Reinforcement learning can be used in training autonomous vehicles where the goal would be obtaining the maximum rewards." (Vijayaraghavan Varadharajan & Akanksha Rajendra Singh, "Building Intelligent Cities: Concepts, Principles, and Technologies", 2021)

"Methodologically, much of modern machine learning practice rests on a variant of trial and error, which we call the train-test paradigm. Practitioners repeatedly build models using any number of heuristics and test their performance to see what works. Anything goes as far as training is concerned, subject only to computational constraints, so long as the performance looks good in testing. Trial and error is sound so long as the testing protocol is robust enough to absorb the pressure placed on it." (Moritz Hardt & Benjamin Recht, "Patterns, Predictions, and Actions: Foundations of Machine Learning", 2022)

22 December 2018

🔭Data Science: Significance (Just the Quotes)

"It is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not. Deviations exceeding twice the standard deviation are thus formally regarded as significant." (Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"If one in twenty does not seem high enough odds, we may, if we prefer it, draw the line at one in fifty (the 2 per cent point), or one in a hundred (the 1 per centp oint). Personally, the writer prefers to set a low standard of significance at the 5 per cent point, and ignore entirely all results which fail to reach this level. A scientific fact should be regarded as experimentally established only if a properly designed experiment rarely fails to give this level of significance," (Ronald A Fisher, 1926)

"An observation is judged significant, if it would rarely have been produced, in the absence of a real cause of the kind we are seeking. It is a common practice to judge a result significant, if it is of such a magnitude that it would have been produced by chance not more frequently than once in twenty trials. This is an arbitrary, but convenient, level of significance for the practical investigator, but it does not mean that he allows himself to be deceived once in every twenty experiments. The test of significance only tells him what to ignore, namely all experiments in which significant results are not obtained. He should only claim that a phenomenon is experimentally demonstrable when he knows how to design an experiment so that it will rarely fail to give a significant result. Consequently, isolated significant results which he does not know how to reproduce are left in suspense pending further investigation." (Ronald A Fisher, "The Statistical Method in Psychical Research", Proceedings of the Society for Psychical Research 39, 1929)

"What the use of P [the significance level] implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred." (Harold Jeffreys, "Theory of Probability", 1939)

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"Errors of the third kind happen in conventional tests of differences of means, but they are usually not considered, although their existence is probably recognized. It seems to the author that there may be several reasons for this among which are 1) a preoccupation on the part of mathematical statisticians with the formal questions of acceptance and rejection of null hypotheses without adequate consideration of the implications of the error of the third kind for the practical experimenter, 2) the rarity with which an error of the third kind arises in the usual tests of significance." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"In the examples we have given [...] our judgment whether P was small enough to justify us in suspecting a significant difference [...] has been more or less intuitive. Most people would agree [...] that a probability of .0001 is so small that the evidence is very much in favour. . . . Suppose we had obtained P = 0.1. [...] Where, if anywhere, can we draw the line? The odds against the observed event which influence a decision one way or the other depend to some extent on the caution of the investigator. Some people (not necessarily statisticians) would regard odds of ten to one as sufficient. Others would be more conservative and reserve judgment until the odds were much greater. It is a matter of personal taste." (G U Yule & M G Kendall, "An introduction to the theoryof statistics" 14th ed., 1950)

"It will, of course, happen but rarely that the proportions will be identical, even if no real association exists. Evidently, therefore, we need a significance test to reassure ourselves that the observed difference of proportion is greater than could reasonably be attributed to chance. The significance test will test the reality of the association, without telling us anything about the intensity of association. It will be apparent that we need two distinct things: (a) a test of significance, to be used on the data first of all, and (b) some measure of the intensity of the association, which we shall only be justified in using if the significance test confirms that the association is real." (Michael J Moroney, "Facts from Figures", 1951)

"The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator." (Frederick Mosteller, "Selected Quantitative Techniques", 1954)

"Null hypotheses of no difference are usually known to be false before the data are collected [...] when they are, their rejection or acceptance simply reflects the size of the sample and the power of the test, and is not a contribution to science." (I Richard Savage, "Nonparametric Statistics", Journal of the American Statistical Association 52, 1957)

"[...] to make measurements and then ignore their magnitude would ordinarily be pointless. Exclusive reliance on tests of significance obscures the fact that statistical significance does not imply substantive significance." (I Richard Savage, "Nonparametric Statistics", Journal of the American Statistical Association 52, 1957)

"[...] the tests of null hypotheses of zero differences, of no relationships, are frequently weak, perhaps trivial statements of the researcher’s aims [...] in many cases, instead of the tests of significance it would be more to the point to measure the magnitudes of the relationships, attaching proper statements of their sampling variation. The magnitudes of relationships cannot be measured in terms of levels of significance." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"There are instances of research results presented in terms of probability values of ‘statistical significance’ alone, without noting the magnitude and importance of the relationships found. These attempts to use the probability levels of significance tests as measures of the strengths of relationships are very common and very mistaken." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true." (William W Rozeboom, "The fallacy of the null–hypothesis significance test", Psychological Bulletin 57, 1960)

"The null hypothesis of no difference has been judged to be no longer a sound or fruitful basis for statistical investigation. […] Significance tests do not provide the information that scientists need, and, furthermore, they are not the most effective method for analyzing and summarizing data." (Cherry A Clark, "Hypothesis Testing in Relation to Statistical Methodology", Review of Educational Research Vol. 33, 1963)

"[...] the test of significance has been carrying too much of the burden of scientific inference. It may well be the case that wise and ingenious investigators can find their way to reasonable conclusions from data because and in spite of their procedures. Too often, however, even wise and ingenious investigators [...] tend to credit the test of significance with properties it does not have." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"[...] we need to get on with the business of generating [...] hypotheses and proceed to do investigations and make inferences which bear on them, instead of [...] testing the statistical null hypothesis in any number of contexts in which we have every reason to suppose that it is false in the first place." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"Overemphasis on tests of significance at the expense especially of interval estimation has long been condemned." (David R Cox, "The role of significance tests", Scandanavian Journal of Statistics 4, 1977) 

"The central point is that statistical significance is quite different from scientific significance and that therefore estimation [...] of the magnitude of effects is in general essential regardless of whether statistically significant departure from the null hypothesis is achieved." (David R Cox, "The role of significance tests", Scandanavian Journal of Statistics 4, 1977) 

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"The idea of statistical significance is valuable because it often keeps us from announcing results that later turn out to be nonresults. A significant result tells us that enough cases were observed to provide reasonable assurance of a real effect. It does not necessarily mean, though, that the effect is big enough to be important." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"It is very bad practice to summarise an important investigation solely by a value of P." (David R Cox, "Statistical significance tests", British Journal of Clinical Pharmacology 14, 1982) 

"The criterion for publication should be the achievement of reasonable precision and not whether a significant effect has been found." (David R Cox, "Statistical significance tests", British Journal of Clinical Pharmacology 14, 1982) 

"The continued very extensive use of significance tests is alarming." (David R Cox, "Some general aspects of the theory of statistics", International Statistical Review 54, 1986) 

"It has been widely felt, probably for thirty years and more, that significance tests are overemphasized and often misused and that more emphasis should be put on estimation and prediction. While such a shift of emphasis does seem to be occurring, for example in medical statistics, the continued very extensive use of significance tests is on the one hand alarming and on the other evidence that they are aimed, even if imperfectly, at some widely felt need." (David R Cox, "Some general aspects of the theory of statistics", International Statistical Review 54, 1986) 

"A tendency to drastically underestimate the frequency of coincidences is a prime characteristic of innumerates, who generally accord great significance to correspondences of all sorts while attributing too little significance to quite conclusive but less flashy statistical evidence." (John A Paulos, "Innumeracy: Mathematical Illiteracy and its Consequences", 1988)

"Which I would like to stress are: (1) A significant effect is not necessarily the same thing as an interesting effect. (2) A non-significant effect is not necessarily the same thing as no difference." (Christopher Chatfield, "Problem solving: a statistician’s guide", 1988)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen,"Things I Have Learned (So Far)", American Psychologist, 1990)

"I do not think that significance testing should be completely abandoned [...] and I don’t expect that it will be. But I urge researchers to provide estimates, with confidence intervals: scientific advance requires parameters with known reliability estimates. Classical confidence intervals are formally equivalent to a significance test, but they convey more information." (Nigel G Yoccoz, "Use, Overuse, and Misuse of Significance Tests in Evolutionary Biology and Ecology", Bulletin of the Ecological Society of America Vol. 72 (2), 1991)

"Rejection of a true null hypothesis at the 0.05 level will occur only one in 20 times. The overwhelming majority of these false rejections will be based on test statistics close to the borderline value. If the null hypothesis is false, the inter-ocular traumatic test ['hit between the eyes'] will often suffice to reject it; calculation will serve only to verify clear intuition." (Ward Edwards et al, "Bayesian Statistical Inference for Psychological Research", 1992) 

"Statistical significance testing can involve a tautological logic in which tired researchers, having collected data on hundreds of subjects, then conduct a statistical test to evaluate whether there were a lot of subjects, which the researchers already know, because they collected the data and know they are tired. This tautology has created considerable damage as regards the cumulation of knowledge." (Bruce Thompson, "Two and One-Half Decades of Leadership in Measurement and Evaluation", Journal of Counseling & Development 70 (3), 1992)

"[…] an honest exploratory study should indicate how many comparisons were made […] most experts agree that large numbers of comparisons will produce apparently statistically significant findings that are actually due to chance. The data torturer will act as if every positive result confirmed a major hypothesis. The honest investigator will limit the study to focused questions, all of which make biologic sense. The cautious reader should look at the number of ‘significant’ results in the context of how many comparisons were made." (James L Mills, "Data torturing", New England Journal of Medicine, 1993)

"Graphic misrepresentation is a frequent misuse in presentations to the nonprofessional. The granddaddy of all graphical offenses is to omit the zero on the vertical axis. As a consequence, the chart is often interpreted as if its bottom axis were zero, even though it may be far removed. This can lead to attention-getting headlines about 'a soar' or 'a dramatic rise (or fall)'. A modest, and possibly insignificant, change is amplified into a disastrous or inspirational trend." (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)

"When significance tests are used and a null hypothesis is not rejected, a major problem often arises - namely, the result may be interpreted, without a logical basis, as providing evidence for the null hypothesis." (David F Parkhurst, "Statistical Significance Tests: Equivalence and Reverse Tests Should Reduce Misinterpretation", BioScience Vol. 51 (12), 2001)

"If you flip a coin three times and it lands on heads each time, it's probably chance. If you flip it a hundred times and it lands on heads each time, you can be pretty sure the coin has heads on both sides. That's the concept behind statistical significance - it's the odds that the correlation (or other finding) is real, that it isn't just random chance." (T Colin Campbell, "The China Study", 2004)

"Many statistics texts do not mention this and students often ask, ‘What if you get a probability of exactly 0.05?’ Here the result would be considered not significant, since significance has been defined as a probability of less than 0.05 (<0.05). Some texts define a significant result as one where the probability is less than or equal to 0.05 ( 0.05). In practice this will make very little difference, but since Fisher proposed the ‘less than 0.05’ definition, which is also used by most scientific publications, it will be used here." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"The dual meaning of the word significant brings into focus the distinction between drawing a mathematical inference and practical inference from statistical results." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"A common statistical error is to summarize comparisons by statistical significance and then draw a sharp distinction between significant and nonsignificant results. The approach of summarizing by statistical significance has a number of pitfalls, most of which are covered in standard statistics courses but one that we believe is less well known. We refer to the fact that changes in statistical significance are not themselves significant. A small change in a group mean, a regression coefficient, or any other statistical quantity can be neither statistically significant nor practically important, but such a change can lead to a large change in the significance level of that quantity relative to a null hypothesis." (Andrew Gelman & Hal Stern, "The Difference between 'Significant' and 'Not Significant' Is Not Itself Statistically Significant", The American Statistician Vol. 60 (4), 2006

"A type of error used in hypothesis testing that arises when incorrectly rejecting the null hypothesis, although it is actually true. Thus, based on the test statistic, the final conclusion rejects the Null hypothesis, but in truth it should be accepted. Type I error equates to the alpha (α) or significance level, whereby the generally accepted default is 5%." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)

"There are three possible reasons for [the] absence of predictive power. First, it is possible that the models are misspecified. Second, it is possible that the model’s explanatory factors are measured at too high a level of aggregation [...] Third, [...] the search for statistically significant relationships may not be the strategy best suited for evaluating our model’s ability to explain real world events [...] the lack of predictive power is the result of too much emphasis having been placed on finding statistically significant variables, which may be overdetermined. Statistical significance is generally a flawed way to prune variables in regression models [...] Statistically significant variables may actually degrade the predictive accuracy of a model [...] [By using] models that are constructed on the basis of pruning undertaken with the shears of statistical significance, it is quite possible that we are winnowing our models away from predictive accuracy." (Michael D Ward et al, "The perils of policy by p-value: predicting civil conflicts" Journal of Peace Research 47, 2010)

"If the group is large enough, even very small differences can become statistically significant." (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"These practices - selective reporting and data pillaging - are known as data grubbing. The discovery of statistical significance by data grubbing shows little other than the researcher’s endurance. We cannot tell whether a data grubbing marathon demonstrates the validity of a useful theory or the perseverance of a determined researcher until independent tests confirm or refute the finding. But more often than not, the tests stop there. After all, you won’t become a star by confirming other people’s research, so why not spend your time discovering new theories? The data-grubbed theory consequently sits out there, untested and unchallenged." (Gary Smith, "Standard Deviations", 2014)

"With fast computers and plentiful data, finding statistical significance is trivial. If you look hard enough, it can even be found in tables of random numbers." (Gary Smith, "Standard Deviations", 2014)

"In short, statistical significance does not mean your result has any practical significance. As for statistical insignificance, it doesn’t tell you much. A statistically insignificant difference could be nothing but noise, or it could represent a real effect that can be pinned down only with more data." (Alex Reinhart, "Statistics Done Wrong: The Woefully Complete Guide", 2015)

"Statistical significance is a concept used by scientists and researchers to set an objective standard that can be used to determine whether or not a particular relationship 'statistically' exists in the data. Scientists test for statistical significance to distinguish between whether an observed effect is present in the data (given a high degree of probability), or just due to chance. It is important to note that finding a statistically significant relationship tells us nothing about whether a relationship is a simple correlation or a causal one, and it also can’t tell us anything about whether some omitted factor is driving the result." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Statistical significance refers to the probability that something is true. It’s a measure of how probable it is that the effect we’re seeing is real (rather than due to chance occurrence), which is why it’s typically measured with a p-value. P, in this case, stands for probability. If you accept p-values as a measure of statistical significance, then the lower your p-value is, the less likely it is that the results you’re seeing are due to chance alone." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

More quotes on "Significance" at the-web-of-knowledge.blogspot.com.

19 December 2018

🔭Data Science: Errors in Statistics (Just the Quotes)

"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature." (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites", 1787)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." (William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"We know not to what are due the accidental errors, and precisely because we do not know, we are aware they obey the law of Gauss. Such is the paradox." (Henri Poincaré, "The Foundations of Science", 1913)

"No observations are absolutely trustworthy. In no field of observation can we entirely rule out the possibility that an observation is vitiated by a large measurement or execution error. If a reading is found to lie a very long way from its fellows in a series of replicate observations, there must be a suspicion that the deviation is caused by a blunder or gross error of some kind. [...] One sufficiently erroneous reading can wreck the whole of a statistical analysis, however many observations there are." (Francis J Anscombe, "Rejection of Outliers", Technometrics Vol. 2 (2), 1960)

"It might be reasonable to expect that the more we know about any set of statistics, the greater the confidence we would have in using them, since we would know in which directions they were defective; and that the less we know about a set of figures, the more timid and hesitant we would be in using them. But, in fact, it is the exact opposite which is normally the case; in this field, as in many others, knowledge leads to caution and hesitation, it is ignorance that gives confidence and boldness. For knowledge about any set of statistics reveals the possibility of error at every stage of the statistical process; the difficulty of getting complete coverage in the returns, the difficulty of framing answers precisely and unequivocally, doubts about the reliability of the answers, arbitrary decisions about classification, the roughness of some of the estimates that are made before publishing the final results. Knowledge of all this, and much else, in detail, about any set of figures makes one hesitant and cautious, perhaps even timid, in using them." (Ely Devons, "Essays in Economics", 1961)

"The art of using the language of figures correctly is not to be over-impressed by the apparent ai

"Measurement, we have seen, always has an element of error in it. The most exact description or prediction that a scientist can make is still only approximate." (Abraham Kaplan, "The Conduct of Inquiry: Methodology for Behavioral Science", 1964)

"A mature science, with respect to the matter of errors in variables, is not one that measures its variables without error, for this is impossible. It is, rather, a science which properly manages its errors, controlling their magnitudes and correctly calculating their implications for substantive conclusions." (Otis D Duncan, "Introduction to Structural Equation Models", 1975)

"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (William E Deming, "On Probability as Basis for Action" American Statistician Vol. 29 (4), 1975)

"When the statistician looks at the outside world, he cannot, for example, rely on finding errors that are independently and identically distributed in approximately normal distributions. In particular, most economic and business data are collected serially and can be expected, therefore, to be heavily serially dependent. So is much of the data collected from the automatic instruments which are becoming so common in laboratories these days. Analysis of such data, using procedures such as standard regression analysis which assume independence, can lead to gross error. Furthermore, the possibility of contamination of the error distribution by outliers is always present and has recently received much attention. More generally, real data sets, especially if they are long, usually show inhomogeneity in the mean, the variance, or both, and it is not always possible to randomize." (George E P Box, "Some Problems of Statistics and Everyday Life", Journal of the American Statistical Association, Vol. 74 (365), 1979)

"Under conditions of uncertainty, both rationality and measurement are essential to decision-making. Rational people process information objectively: whatever errors they make in forecasting the future are random errors rather than the result of a stubborn bias toward either optimism or pessimism. They respond to new information on the basis of a clearly defined set of preferences. They know what they want, and they use the information in ways that support their preferences." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Linear regression assumes that in the population a normal distribution of error values around the predicted Y is associated with each X value, and that the dispersion of the error values for each X value is the same. The assumptions imply normal and similarly dispersed error distributions." (Fred C Pampel, "Linear Regression: A primer", 2000)

"Compound errors can begin with any of the standard sorts of bad statistics - a guess, a poor sample, an inadvertent transformation, perhaps confusion over the meaning of a complex statistic. People inevitably want to put statistics to use, to explore a number's implications. [...] The strengths and weaknesses of those original numbers should affect our confidence in the second-generation statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Trimming potentially theoretically meaningful variables is not advisable unless one is quite certain that the coefficient for the variable is near zero, that the variable is inconsequential, and that trimming will not introduce misspecification error." (James Jaccard, "Interaction Effects in Logistic Regression", 2001)

"The central limit theorem says that, under conditions almost always satisfied in the real world of experimentation, the distribution of such a linear function of errors will tend to normality as the number of its components becomes large. The tendency to normality occurs almost regardless of the individual distributions of the component errors. An important proviso is that several sources of error must make important contributions to the overall error and that no particular source of error dominate the rest." (George E P Box et al, "Statistics for Experimenters: Design, discovery, and innovation" 2nd Ed., 2005)

"Two things explain the importance of the normal distribution: (1) The central limit effect that produces a tendency for real error distributions to be 'normal like'. (2) The robustness to nonnormality of some common statistical procedures, where 'robustness' means insensitivity to deviations from theoretical normality." (George E P Box et al, "Statistics for Experimenters: Design, discovery, and innovation" 2nd Ed., 2005)

"A common statistical error is to summarize comparisons by statistical significance and then draw a sharp distinction between significant and nonsignificant results. The approach of summarizing by statistical significance has a number of pitfalls, most of which are covered in standard statistics courses but one that we believe is less well known. We refer to the fact that changes in statistical significance are not themselves significant. A small change in a group mean, a regression coefficient, or any other statistical quantity can be neither statistically significant nor practically important, but such a change can lead to a large change in the significance level of that quantity relative to a null hypothesis." (Andrew Gelman & Hal Stern, "The Difference between 'Significant' and 'Not Significant' Is Not Itself Statistically Significant", The American Statistician Vol. 60 (4), 2006

"One of the classical assumptions in linear regression analysis is that of equal variance, which is frequently referred to as homoscedasticity. However, this assumption may not be valid in data analysis arising from many fields (e.g., economics, finance, engineering, and biological science). When heteroscedasticity (nonconstant variance) occurs, the statistical inferences and predictions via the ordinary least squares method are often not reliable. Therefore, it is crucial to study the heteroscedastic error structure in linear model fitting." (Xiaogang Su et al, "Treed Variance", Journal of Computational and Graphical Statistics, Vol. 15 (2), 2006)

"There are many ways for error to creep into facts and figures that seem entirely straightforward. Quantities can be miscounted. Small samples can fail to accurately reflect the properties of the whole population. Procedures used to infer quantities from other information can be faulty. And then, of course, numbers can be total bullshit, fabricated out of whole cloth in an effort to confer credibility on an otherwise flimsy argument. We need to keep all of these things in mind when we look at quantitative claims. They say the data never lie - but we need to remember that the data often mislead." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Always expect to find at least one error when you proofread your own statistics. If you don’t, you are probably making the same mistake twice." (Cheryl Russell)

[Murphy’s Laws of Analysis:] "(1) In any collection of data, the figures that are obviously correct contain errors. (2) It is customary for a decimal to be misplaced. (3) An error that can creep into a calculation, will. Also, it will always be in the direction that will cause the most damage to the calculation." (G C Deakly)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.