Showing posts with label challenges. Show all posts
Showing posts with label challenges. Show all posts

04 July 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 41: How AI Can Play Devil’s Advocate - Challenging Assumptions and Expanding Perspectives)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blogpost of 600 words on how AI can play devil's advocate"

Introduction

Artificial Intelligence (AI) is often seen as a tool for efficiency, automation, and problem-solving. However, one of its most intriguing capabilities is its ability to play devil’s advocate - challenging assumptions, questioning biases, and presenting alternative viewpoints. By acting as a skeptical counterbalance, AI can help individuals and organizations think critically, refine arguments, and explore diverse perspectives.

1. What Does It Mean to Play Devil’s Advocate?

Playing devil’s advocate means arguing against a prevailing opinion or assumption, even if one does not personally agree with the opposing stance. This approach is valuable in:

  • Debates and discussions, where opposing viewpoints strengthen arguments.
  • Decision-making, ensuring all possibilities are considered.
  • Problem-solving, where unconventional perspectives lead to innovative solutions.

AI, with its ability to analyze vast amounts of data and generate counterarguments, is uniquely positioned to take on this role.

2. How AI Challenges Confirmation Bias

One of AI’s most important functions as a devil’s advocate is breaking the confirmation bias loop - the tendency for people to seek out information that supports their existing beliefs while ignoring contradictory evidence. AI can:

  • Identify logical inconsistencies in arguments.
  • Present alternative viewpoints, even if they challenge popular opinions.
  • Encourage critical thinking by questioning assumptions.

By disrupting confirmation bias, AI helps individuals and organizations make more informed and balanced decisions.

3. AI in Decision-Making and Policy Development

AI-driven devil’s advocacy is particularly useful in policy-making, business strategy, and ethical debates. Some applications include:

  • Corporate decision-making: AI can highlight risks and alternative strategies before executives finalize plans.
  • Legal and ethical discussions: AI can present opposing viewpoints in debates about regulations and governance.
  • Scientific research: AI can challenge hypotheses, ensuring rigorous testing and validation.

By forcing individuals to consider alternative perspectives, AI enhances objectivity and rational decision-making.

4. AI’s Role in Amplifying Minority Voices

AI can also serve as a mediator for underrepresented perspectives, ensuring that minority viewpoints are heard in group discussions. AI-driven devil’s advocate systems:

  • Reduce social influence biases, preventing dominant voices from overshadowing others.
  • Encourage diverse perspectives, fostering more inclusive decision-making.
  • Improve psychological safety, allowing individuals to express dissenting opinions anonymously.
  • This approach ensures that critical discussions remain balanced and representative.

5. The Challenges of AI as a Devil’s Advocate

While AI can challenge assumptions, it also faces limitations:

  • AI models may reinforce biases if trained on skewed data.
  • AI lacks true human intuition, making some counterarguments overly rigid.
  • AI’s responses depend on prompts, requiring careful input to generate meaningful opposition.

To maximize AI’s effectiveness as a devil’s advocate, developers must ensure diverse training data and refine AI’s ability to engage in nuanced discussions.

Conclusion: AI as a Catalyst for Critical Thinking

AI’s ability to challenge assumptions, disrupt biases, and amplify diverse perspectives makes it a powerful tool for critical thinking and informed decision-making. By playing devil’s advocate, AI helps individuals and organizations refine arguments, explore alternative viewpoints, and make more balanced choices.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

02 July 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 39: How Fast Does Humanity Move in Enforcing Policies to Cope with AI’s Rapid Growth?)

Prompt Engineering Series
Prompt Engineering Series

Introduction

Artificial Intelligence (AI) is evolving at an unprecedented pace, reshaping industries, governance, and daily life. However, the speed at which AI advances often outpaces policy enforcement, leaving governments and institutions struggling to regulate its impact effectively. While AI’s rapid development demands swift policy responses, humanity’s ability to enforce regulations remains slow and fragmented due to bureaucratic hurdles, ethical dilemmas, and global inconsistencies.

1. The Lag Between AI Innovation and Policy Enforcement

AI’s growth is exponential, but policy enforcement follows a linear and bureaucratic process. Some key reasons for this lag include:

  • Complex legislative procedures: Governments require extensive debates, approvals, and revisions before implementing AI regulations.
  • Ethical uncertainties: Policymakers struggle to define AI’s ethical boundaries, delaying enforcement.
  • Corporate resistance: Tech companies often lobby against strict AI regulations, slowing policy adoption.

This delay creates a regulatory gap, where AI evolves faster than laws can govern its use.

2. Global AI Policy Enforcement: A Fragmented Approach

Different countries enforce AI policies at varying speeds, leading to inconsistent regulations worldwide. Some examples include:

  • The European Union (EU): The EU AI Act is one of the most comprehensive AI regulations, but its enforcement is slow due to legal complexities.
  • The United States: AI policy enforcement is largely decentralized, with states implementing different regulations.
  • China: AI governance is strict, but enforcement focuses on state control rather than ethical concerns.

This fragmented approach makes global AI regulation difficult, as different regions prioritize different aspects of AI governance.

3. The Challenges of AI Policy Enforcement

Even when AI policies are established, enforcement faces several challenges:

  • Lack of technical expertise: Policymakers often lack AI knowledge, making enforcement ineffective.
  • Corporate non-compliance: Companies may bypass regulations through loopholes or offshore operations.
  • Slow adaptation to AI advancements: Policies become outdated quickly as AI evolves.

Without continuous policy updates, AI enforcement remains inefficient and reactive rather than proactive.

4. The Need for Dynamic AI Regulations

To cope with AI’s fast pace, experts propose dynamic AI regulations, where policies evolve alongside technological advancements. Some solutions include:

  • AI governance frameworks that adapt to new AI developments.
  • International AI cooperation to create unified global standards.
  • Automated AI auditing systems to monitor compliance in real time.

By implementing flexible and adaptive policies, humanity can keep pace with AI’s rapid growth.

Conclusion: Humanity Must Accelerate AI Policy Enforcement

While AI evolves rapidly, policy enforcement remains slow and fragmented, creating regulatory gaps that could lead to ethical and security risks. Governments, businesses, and researchers must accelerate AI policy development, ensuring regulations keep pace with technological advancements. Without proactive enforcement, AI’s impact on society could become unmanageable, making responsible AI governance more urgent than ever.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

24 June 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 31: The Potential of AI to Reach Singularity)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blogpost of 600 words on the potential of AI to reach singularity"

Introduction

Artificial Intelligence (AI) has evolved rapidly, transforming industries and reshaping human interactions. But one of the most debated questions in AI research is whether it will eventually reach singularity - a hypothetical point where AI surpasses human intelligence and becomes self-improving beyond human control. While some experts believe AI singularity is inevitable, others argue that fundamental limitations may prevent it from ever occurring.

1. What Is AI Singularity?

AI singularity refers to the moment when artificial intelligence exceeds human intelligence, leading to exponential advancements beyond human comprehension. At this stage, AI would be capable of:

  • Self-improvement: AI systems could rewrite their own code to enhance their capabilities.
  • Autonomous decision-making: AI could operate independently without human intervention.
  • Unprecedented problem-solving: AI could tackle complex global challenges faster than humans.

Some researchers predict AI singularity could occur as early as 2027, while others believe it may take decades or might never happen.

2. The Path to AI Singularity

Several technological advancements are driving AI toward singularity:

  • Artificial General Intelligence (AGI): Unlike today’s AI, which specializes in narrow tasks, AGI would be capable of reasoning, learning, and adapting across multiple domains.
  • Quantum Computing: AI powered by quantum processors could achieve computational speeds far beyond traditional computers.
  • Neural Networks and Deep Learning: AI models are becoming increasingly sophisticated, mimicking human brain functions more closely.

Experts suggest that once AGI is achieved, it could rapidly evolve into Artificial Super Intelligence (ASI) - a level of intelligence surpassing all human knowledge combined.

3. Challenges and Limitations

Despite AI’s rapid progress, several obstacles could delay or prevent singularity:

  • Lack of consciousness: AI lacks subjective experiences, emotions, and self-awareness, which are fundamental aspects of human intelligence.
  • Ethical and regulatory constraints: Governments and researchers may impose strict regulations to prevent AI from evolving uncontrollably.
  • Computational limitations: Even with advanced processors, AI may struggle to replicate the complexity of human cognition.

Some scientists argue that current AI models are a "dead end" for achieving human-level intelligence, suggesting that singularity may remain a theoretical concept.

4. The Risks and Implications of AI Singularity

If AI singularity were to occur, it could bring both unprecedented benefits and existential risks:

  • Positive outcomes: AI could revolutionize healthcare, solve climate change, and accelerate scientific discoveries.
  • Negative consequences: AI could become uncontrollable, leading to ethical dilemmas, economic disruption, and security threats.
  • The question remains: Will AI singularity be a technological utopia or an existential crisis?

Conclusion: Is AI Singularity Inevitable?

While AI continues to advance, reaching singularity remains uncertain. Some experts believe it could happen within the next few decades, while others argue that fundamental limitations will prevent AI from ever surpassing human intelligence. Regardless of the timeline, AI’s development must be guided by ethical considerations, regulatory oversight, and responsible innovation to ensure it benefits humanity rather than posing a threat.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

22 June 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 29: The Duality of AI - Innovation and Ethical Challenges)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blogpost of 600 words on the duality of AI"

Introduction

Artificial Intelligence (AI) is reshaping industries, revolutionizing automation, and enhancing human capabilities. However, AI’s rapid advancement presents a duality - a balance between progress and ethical concerns, efficiency and unpredictability, and human collaboration and autonomy. Understanding AI’s dual nature is essential for ensuring responsible development and integration into society.

1. AI as a Tool for Innovation

AI’s ability to process vast amounts of data, recognize patterns, and automate tasks has led to groundbreaking innovations across multiple fields:

  • Healthcare: AI-powered diagnostics improve accuracy in detecting diseases.
  • Finance: AI-driven algorithms optimize investment strategies and fraud detection.
  • Education: AI personalizes learning experiences, making education more accessible.
  • Environmental Science: AI enhances climate modeling and conservation efforts.

These advancements demonstrate AI’s potential to improve efficiency, accuracy, and accessibility, making it a powerful tool for progress.

2. AI’s Ethical and Social Challenges

Despite its benefits, AI also presents ethical dilemmas and societal risks. Some of the most pressing concerns include:

  • Bias in AI models: AI systems trained on biased data can reinforce discrimination in hiring, healthcare, and law enforcement.
  • Privacy concerns: AI-driven surveillance and data collection raise questions about personal security.
  • Job displacement: AI automation replaces human labor, leading to economic instability.
  • AI-generated misinformation: Deepfake technology and AI-powered propaganda threaten democracy and trust.

These challenges highlight the need for ethical AI development, ensuring AI serves humanity without unintended harm.

3. AI’s Role in Human Collaboration vs. Autonomy

AI’s duality extends to its relationship with human intelligence. While AI enhances human capabilities, it also raises concerns about autonomous decision-making:

  • AI as a collaborator: AI assists researchers, doctors, and engineers in solving complex problems.
  • AI as an autonomous system: AI-driven automation in warfare, finance, and governance raises concerns about accountability.

Balancing human oversight and AI autonomy is crucial for maintaining ethical AI integration.

4. AI’s Dual Impact on Creativity and Control

AI is transforming creative fields, generating art, music, and literature. However, this raises questions about authorship, originality, and control:

  • AI enhances creativity: AI-powered tools assist artists, writers, and musicians in expanding their creative potential.
  • AI challenges authenticity: AI-generated content blurs the line between human and machine creativity.

As AI continues to evolve, society must define ethical boundaries for AI-driven creativity.

Conclusion: Navigating AI’s Duality

AI’s dual nature - innovation vs. ethical concerns, collaboration vs. autonomy, creativity vs. control -requires responsible development, regulation, and human oversight. By addressing AI’s challenges while embracing its potential, society can ensure AI remains a force for progress rather than disruption.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

20 June 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 27: The Negative Impact of AI on the Economy)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blogpost of 600 words on how AI can impact the economy negatively"

Introduction

Artificial Intelligence (AI) is transforming industries, automating processes, and reshaping the global economy. While AI offers efficiency, innovation, and productivity gains, it also presents significant economic risks that could disrupt labor markets, widen inequality, and create financial instability. Understanding these challenges is crucial for ensuring AI’s development aligns with sustainable economic growth.

1. AI-Driven Job Displacement and Unemployment

One of the most pressing concerns about AI’s impact on the economy is job displacement. AI-powered automation is replacing human labor in various industries, including:

  • Manufacturing: AI-driven robotics reduce the need for factory workers.
  • Retail and customer service: AI chatbots and self-checkout systems replace human employees.
  • Finance: AI automates investment decisions, reducing demand for financial analysts.

While AI creates new jobs in data science, software engineering, and AI ethics, it eliminates traditional roles, leading to mass unemployment and economic instability.

2. Widening Economic Inequality

AI’s integration into businesses benefits corporations that can afford advanced AI systems, but it disadvantages smaller companies and low-income workers. AI-driven automation:

  • Increases profits for large corporations, widening the gap between wealthy and struggling businesses.
  • Reduces wages for workers, as AI replaces human labor.
  • Limits economic mobility, making it harder for displaced workers to find new opportunities.

Without proper regulation, AI could exacerbate income inequality, leading to social unrest and economic polarization.

3. AI’s Role in Financial Market Instability

AI-driven algorithms dominate stock trading, investment strategies, and financial predictions. While AI enhances efficiency, it also introduces risks:

  • AI-powered trading systems can trigger market crashes due to rapid, automated decision-making.
  • AI-driven financial models may misinterpret economic trends, leading to poor investment choices.
  • Over-reliance on AI in banking could create vulnerabilities in financial security.

AI’s influence on financial markets requires strict oversight to prevent economic instability.

4. AI’s Impact on Tax Revenue and Public Services

As AI replaces human workers, governments face declining tax revenue, affecting public services such as:

  • Healthcare: Reduced funding for hospitals and medical programs.
  • Education: Limited resources for schools and universities.
  • Infrastructure: Less investment in transportation and urban development.

Without a restructured tax system, AI-driven automation could weaken government funding, impacting essential services.

5. Ethical and Regulatory Challenges in AI Economics

AI’s rapid expansion outpaces regulatory frameworks, leading to:

  • Unregulated AI-driven monopolies, where a few corporations control AI technologies.
  • Privacy concerns, as AI collects vast amounts of consumer data.
  • Bias in AI decision-making, affecting hiring, lending, and economic policies.

Governments must implement AI regulations to ensure fair competition and ethical economic practices.

Conclusion: AI’s Economic Risks Require Careful Management

While AI offers efficiency and innovation, its negative economic impact - job displacement, inequality, financial instability, tax revenue decline, and regulatory challenges - must be addressed. Governments, businesses, and researchers must develop policies that balance AI’s benefits with economic sustainability, ensuring AI serves society rather than disrupting it.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

16 April 2025

🧮ERP: Implementations (Part XIII: On Project Management)

ERP Implementations Series
ERP Implementations Series

Given its intrinsic complexity and extended implications, an ERP implementation can be considered as the real test of endurance for a Project Manager, respectively the team managed. Such projects typically deal with multiple internal and external parties with various interests in the outcomes of the project. Moreover, such projects involve multiple technologies, systems, and even methodologies. But, more importantly, such projects tend to have specific characteristics associated with their mass, being challenging to manage within the predefined constraints: time, scope, costs and quality.

From a Project Manager’s perspective what counts is only the current project. From a PMO perspective, one project, independent of its type, must be put within the broader perspective, while looking at the synergies and other important aspects that can help the organization. Unfortunately, for many organizations all begins and ends with the implementation, and this independently of the outcomes of the project. Often failure lurks in the background and usually there can be small differences that in the long term have a considerable impact. ERP implementations are more than other projects sensitive on the initial conditions – the premises under which the project starts and progresses. 

One way of coping with this inherent complexity is to split projects into several phases considered as projects or subprojects in their own boundaries. This allows organizations to narrow the focus and split the overall work into more manageable pieces, reducing to some degree the risks while learning in the process about organization’s capabilities in addressing the various aspects. Conversely, the phases are not necessarily sequential but often must overlap to better manage the resources and minimize waste. 

Given that an implementation project can take years, it’s normal for people to come and go, some taking over work from colleagues, with or without knowledge transfer. The knowledge is available further on, as long as the resources don’t leave the organization, though knowledge transfer can’t be taken for granted. It’s also normal for resources to suddenly not be available or disappear, increasing the burden that needs to be shifted on others’ shoulders. There’s seldom a project without such events and one needs to make the best of each situation, even if several tries and iterations are needed in the process.

Somebody needs to manage all this, and the weight of the whole project falls on a PM’s shoulders. Managing by exception and other management principles break under the weight of implementation projects and often it’s challenging to make progress without addressing this. Fortunately, PMs can shift the burden on Key Users and other parties involved in the project. Splitting a project in subprojects can help set boundaries even if more management could occasionally be involved. Also having clear responsibilities and resources who can take over the burdens when needed can be a sign of maturity of the teams, respectively the organization. 

Teams in Project Management are often compared with teams in sports, though the metaphor is partially right when each party has a ball to play with, while some of the players or even teams prefer to play alone at their own pace. It takes time to build effective teams that play well together, and the team spirit or other similar concepts can't fill all the gaps existing in organizations! Training in team sports has certain characteristics that must be mirrored in organizations to allow for teams to improve. Various parties expect from the PM to be the binder and troubleshooter of something that should have been part of an organization’s DNA! Bringing external players to do the heavy lifting may sometimes work, though who’ll do the lifting after the respective resources are gone? 

Previous Post <<||>> Next Post

14 April 2025

🧮ERP: Implementations (Part XI: Tales from the Crypt)

ERP Implementation Series
ERP Implementations Series

One can seldom meet more frighteningly strange stories than the ones told by people who worked in ERP implementations. Such projects attempt to model an organization’s main functions and processes, independently on whether the focus is on production, finance, supply chain, services, projects or human resources. Because they tend to touch all important aspects of a business, such projects become so complex and political that they are often challenging to manage and occasionally are predestined to failure by design.

For the ones who never participated in an ERP implementation, imagine an average project and the number of challenges associated with it, and multiply it by 10 or a similar number that reflects the increase in complexity with the translation to broader scales. The jump in complexity can be compared with the jump from putting together a bed after a scheme to building a whole house using the same level of detail. The scale can further increase by moving from a house to a whole building or a complex of residential houses. Even if that’s technically achievable, a further challenge is how to build all this in a short amount of time, with minimal costs and acceptable quality levels.

With the increase of scale, imagine the amount of planning and coordination that needs to be achieved to avoid any delays. Even if many plan with the "first-time right" objective in mind, inherent issues are often unavoidable, and an organization’s agility can be measured on how robustly it can handle the foreseeable and unforeseeable challenges altogether. Of course, there are many approaches that allow one to minimize, defer or share the risks, or even opportunities, though there’s usually an important gap between one’s planning and reality!

This doesn’t mean that such projects are unmanageable! Everything can be managed to some level of detail and within some tolerance margins, however many organizations are tempted to answer complexity with complexity, and that’s seldom the right approach! Ideally, complexity should be broken down to manageable parts, though that’s challenging to do when one doesn’t know what is being done. That’s why many organizations search for partners with which to share the risks and success, though that works if the customer, and its partners can stir the same ship toward common destinations, at least for the main itinerary if not for the whole duration of the trip.  

Unfortunately, as happens in partnerships that diverge toward distinct goals, the misalignment and other similar factors resulting from this divergence can lead to further challenges that increase the complexity of ERP implementations even more. Ideally, a partner should behave like the mechanics at a pitstop, though that’s utopic especially when they must be always available and this for the whole duration of the project. So, all parties need to compromise somehow, and, even if there are general recipes that can be used, it’s challenging to make everybody happy!

Often in an ERP implementation is defined from the beginning whose needs are the most important, and from there one can build a whole hierarchy of scenarios, models and analyses that should show the right path(s). There’s a lot of knowledge that can be carried out between projects, respectively, between the different phases of a project, though there will always be surprises and one should be prepared for them! Same as the captain must occasionally change the course to avoid or fight storms or other hazards, so must the corresponding structure act when this is the case! Occasionally, each team member may be in the position to act like a captain and raise to expectations, though project designs must allow for this!

21 February 2025

🧩IT: Idioms, Sayings, Proverbs and Other Words of Wisdom

In IT setups one can hear many idioms, sayings and other type of words of wisdom that make the audience smile, even if some words seem to rub salt in the wounds. These are some of the idioms met in IT meetings or literature. Frankly, it's worth to write more about each of them, and this it the purpose of the "project". 

"A bad excuse is better than none"

"A bird in the hand is worth two in the bush": a working solution is worth more than hypothetically better solutions. 

"A drowning man will clutch at a straw": a drowning organization will clutch to the latest hope

"A friend in need (is a friend indeed)": 

"A journey of a thousand miles begins with a single step"

"A little learning is a dangerous thing"

"A nail keeps a shoe, a shoe a horse, a horse a man, a man a castle" (cca 1610): A nail keeps the shoe

"A picture is worth a thousand words"

"A stitch in time (saves nine)"

"Actions speak louder than words"

"All good things must come to an end"

"All generalizations are false" [attributed to Mark Twain, Alexandre Dumas (Père)]: Cutting though Complexity

"All the world's a stage, And all [...] merely players": A look forward

"All roads lead to Rome"

"All is well that ends well"

"An ounce of prevention is worth a pound of cure"

"Another day, another dollar"

"As you sow so shall you reap"

"Beauty is in the eye of the beholder"

"Better late than never": SQL Server and Excel Data

"Better safe than sorry": Deleting obsolete companies

"Big fish eat little fish"

"Better the Devil you know (than the Devil you do not)": 

"Calm seas never made a good sailor"

"Count your blessings"

"Dead men tell no tales"

"Do not bite the hand that feeds you"

"Do not change horses in midstream"

"Do not count your chickens before they are hatched"

"Do not cross the bridge till you come to it"

"Do not judge a book by its cover"

"Do not meet troubles half-way"

"Do not put all your eggs in one basket"

"Do not put the cart before the horse"

"Do not try to rush things; ignore matters of minor advantage" (Confucius): A tale of two cities II

"Do not try to walk before you can crawl"

"Doubt is the beginning, not the end, of wisdom"

"Easier said than done"

"Every cloud has a silver lining"

"Every little bit helps"

"Every picture tells a story"

"Failing to plan is planning to fail"Planning correctly misunderstood...

"Faith will move mountains"

"Fake it till you make it"

"Fight fire with fire"

"First impressions are the most lasting"

"First things first": Ways of looking at data

"Fish always rots from the head downwards"

"Fools rush in (where angels fear to tread)" (Alexander Pope, "An Essay on Criticism", cca. 1711): A tale of two cities II

"Half a loaf is better than no bread"

"Haste makes waste"

"History repeats itself"

"Hope for the best, and prepare for the worst"

"If anything can go wrong, it will" (Murphy's law)

"If it ain't broke, don't fix it.": Approaching a query

"If you play with fire, you will get burned"

"If you want a thing done well, do it yourself"

"Ignorance is bliss"

"Imitation is the sincerest form of flattery"

"It ain't over till/until it's over"

"It is a small world"

"It is better to light a candle than curse the darkness"

"It is never too late": A look backAll-knowing developers are back...

"It's a bad plan that admits of no modification." (Publilius Syrus)Planning Correctly Misunderstood I

"It’s not an adventure until something goes wrong." (Yvon Chouinard)Documentation - Lessons learned

"It is not enough to learn how to ride, you must also learn how to fall"

"It takes a whole village to raise a child"

"It will come back and haunt you"

"Judge not, that ye be not judged"

"Kill two birds with one stone"

"Knowledge is power, guard it well"

"Learn a language, and you will avoid a war" (Arab proverb)

"Less is more"

"Life is what you make it"

"Many hands make light work"

"Moderation in all things"

"Money talks"

"More haste, less speed"

"Necessity is the mother of invention"

"Never judge a book by its cover"

"Never say never"

"Never too old to learn"

"No man can serve two masters"

"No pain, no gain"

"No plan ever survived contact with the enemy.' (Carl von Clausewitz)Planning Correctly Misunderstood I

"Oil and water do not mix"

"One-man show": series

"One man's trash is another man's treasure"

"One swallow does not make a summer"

"Only time will tell": The Software Quality Perspective and AI, Microsoft FabricIt’s all about Partnership IIAccess vs. LightSwitch

"Patience is a virtue"

"Poke the bear": Mea Culpa - A Look Forward

"Practice makes perfect"

"Practice what you preach"

"Prevention is better than cure"

"Rules were made to be broken"

"Seek and ye shall find"

"Some are more equal than others" (George Orwell, "Animal Farm")

"Spoken words fly away, written words remain." ["Verba volant, scripta manent"]: Documentation - Lessons learned

"Strike while the iron is hot"

"Technology is dead": Dashboards Are Dead & Other Crapprogramming is dead

"The best defense is a good offense"

"The bets are off":  A look forward

"The bigger they are, the harder they fall"

"The devil is in the detail": Copilot Stories Part IV, Cutting through ComplexityMore on SQL DatabasesThe Analytics MarathonThe Choice of Tools in PM, Who Messed with My Data?

"The die is cast"

"The exception which proves the rule"

"The longest journey starts with a single step"

"The pursuit of perfection is a fool's errand"

"There are two sides to every question"

"There is no smoke without fire"

"There's more than one way to skin a cat" (cca. 1600s)

"There is no I in team"

"There is safety in numbers"

"Those who do not learn from history are doomed to repeat it" (George Santayana)

"Time is money"

"To learn a language is to have one more window from which to look at the world" (Chinese proverb)[5

"Too little, too late"

"Too much of a good thing"

"Truth is stranger than fiction"

"Two birds with one stone": Deleting sequential data...

"Two heads are better than one": Pair programming

"Two wrongs (do not) make a right"

"United we stand, divided we fall"

"Use it or lose it"

"Unity is strength"

"Variety is the spice of life." (William Cowper)

"Virtue is its own reward"

"Well begun is half done"

"What does not kill me makes me stronger"

"Well done is better than well said"

"What cannot be cured must be endured"

"What goes around, comes around"

"When life gives you lemons, make lemonade"

"When the cat is away, the mice will play"

"When the going gets tough, the tough get going"

"Where there is a will there is a way"

"With great power comes great responsibility"

"Work expands so as to fill the time available"

"You are never too old to learn": All-Knowing Developers are Back in Demand?

"You can lead a horse to water, but you cannot make it drink"

"You cannot make an omelet without breaking eggs"

"(You cannot) teach an old dog new tricks"

"You must believe and not doubt at all": Believe and not doubt

"Zeal without knowledge is fire without light"

Previous Post <<||>> Next Post

References:
[1] Wikipedia (2024) List of proverbial phrases [link]

13 December 2024

🧭💹Business Intelligence: Perspectives (Part 20: From BI to AI)

Business Intelligence Series

No matter how good data visualizations, reports or other forms of BI artifacts are, they only serve a set of purposes for a limited amount of time, limited audience or any other factors that influence their lifespan. Sooner or later the artifacts become thus obsolete, being eventually disabled, archived and/or removed from the infrastructure. 

Many artifacts require a considerable number of resources for their creation and maintenance over time. Sometimes the costs can be considerably higher than the benefits brought, especially when the data or the infrastructure are used for a narrow scope, though there can be other components that need to be considered in the bigger picture. Having a report or visualization one can use when needed can have an important impact on the business in correcting issues, sizing opportunities or filling the knowledge gaps. 

Even if it’s challenging to quantify the costs associated with the loss of opportunities rooted in the lack of data, respectively information, the amounts can be considerable high, greater even than building a whole BI infrastructure. Organization’s agility in addressing the important gaps can make a considerable difference, at least in theory. Having the resources that can be pulled on demand can give organizations the needed competitive boost. Internal or external resources can be used altogether, though, pragmatically speaking, there will be always a gap between demand and supply of knowledgeable resources.

The gap in BI artefacts can be addressed nowadays by AI-driven tools, which have the theoretical potential of shortening the gap between needs and the availability of solutions, respectively a set of answers that can be used in the process. Of course, the processes of sense-making and discovery are not that simple as we’d like, though it’s a considerable step forward. 

Having the possibility of asking questions in natural language and guiding the exploration process to create visualizations and other artifacts using prompt engineering and other AI-enabled methods offers new possibilities and opportunities that at least some organizations started exploring already. This however presumes the existence of an infrastructure on which the needed foundation can be built upon, the knowledge required to bridge the gap, respectively the resources required in the process. 

It must be stressed out that the exploration processes may bring no sensible benefits, at least no immediately, and the whole process depends on organizations’ capabilities of identifying and sizing the respective opportunities. Therefore, even if there are recipes for success, each organization must identify what matters and how to use technologies and the available infrastructure to bridge the gap.

Ideally to make progress organizations need besides the financial resources the required skillset, a set of projects that support learning and value creation, respectively the design and execution of a business strategy that addresses the steps ahead. Each of these aspects implies risks and opportunities altogether. It will be a test of maturity for many organizations. It will be interesting to see how many organizations can handle the challenge, respectively how much past successes or failures will weigh in the balance. 

AI offers a set of capabilities and opportunities, however the chance of exploring and failing fast is of great importance. AI is an enabler and not a magic wand, no matter what is preached in technical workshops! Even if progress follows an exponential trajectory, it took us more than half of century from the first steps until now and probably many challenges must be still overcome. 

The future looks interesting enough to be pursued, though are organizations capable to size the opportunities, respectively to overcome the challenges ahead? Are organizations capable of supporting the effort without neglecting the other priorities? 

12 December 2024

🧭💹Business Intelligence: Perspectives (Part 19: Data Visualization between Art, Pragmatism and Kitsch)

Business Intelligence Series

The data visualizations (aka dataviz) presented in the media, especially the ones coming from graphical artists, have the power to help us develop what is called graphical intelligence, graphical culture, graphical sense, etc., though without a tutor-like experience the process is suboptimal because it depends on our ability of identifying what is important and which are the steps needed for decoding and interpreting such work, respectively for integrating their messages in our overall understanding about the world.

When such skillset is lacking, without explicit annotations or other form of support, the reader might misinterpret or fail to observe important visual cues even for simple visualizations, with all the implications deriving from this – a false understanding, and further aspects deriving from it, this being probably the most important aspect to consider. Unfortunately, even the most elaborate work can fail if the reader doesn’t have a basic understanding of all that’s implied in the process.

The books of Willard Brinton, Ana Rogers, Jacques Bertin, William Cleveland, Leland Wilkinson, Stephen Few, Albert Cairo, Soctt Berinato and many others can help the readers build a general understanding of the dataviz process and how data visualizations or simple graphics can be used/misused effectively, though each reader must follow his/her own journey. It’s also true that the basics can be easily learned, though the deeper one dives, the more interesting and nontrivial the journey becomes. Fortunately, the average reader can stick to the basics and many visualizations are simple enough to be understood.

To grasp the full extent of the implications, one can make comparisons with the domain of poetry where the author uses basic constructs like metaphor, comparisons, rhythm and epithets to create, communicate and imprint in reader’s mind old and new meanings, images and feelings altogether. Artistic data visualizations tend to offer similar charge as poetry does, even if the impact might not appeal so much to our artistic sensibility. Though dataviz from this perspective is or at least resembles an art form.

Many people can write verses, though only a fraction can write good meaningful poetry, from which a smaller fraction get poems, respectively even fewer get books published. Conversely, not everything can be expressed in verses unless one finds good metaphors and other aspects that can be leveraged in the process. Same can be said about good dataviz.

One can argue that in dataviz the author can explore and learn especially by failing fast (seeing what works and what doesn’t). One can also innovate, though the creator has probably a limited set of tools and rules for communication. Enabling readers to see the obvious or the hidden in complex visualizations or contexts requires skill and some kind of mastery of the visual form.

Therefore, dataviz must be more pragmatic and show the facts. In art one has the freedom to distort or move things around to create new meanings, while in dataviz it’s important for the meaning to be rooted in 'truth', at least by definition. The more the creator of a dataviz innovates, the higher the chances of being misunderstood. Moreover, readers need to be educated in interpreting the new meanings and get used to their continuous use.

Kitsch is a term applied to art and design that is perceived as naïve imitation to the degree that it becomes a waste of resources even if somebody pays the tag price. There’s a trend in dataviz to add elements to visualizations that don’t bring any intrinsic value – images, colors and other elements can be misused to the degree that the result resembles kitsch, and the overall value of the visualization is diminished considerably.

16 October 2024

🧭💹Business Intelligence: Perspectives (Part 18: There’s More to Noise)

Business Intelligence Series
Business Intelligence Series

Visualizations should be built with an audience's characteristics in mind! Upon case, it might be sufficient to show only values or labels of importance (minima, maxima, inflexion points, exceptions, trends), while other times it might be needed to show all or most of the values to provide an accurate extended perspective. It even might be useful to allow users switching between the different perspectives to reduce the clutter when navigating the data or look at the patterns revealed by the clutter. 

In data-based storytelling are typically shown the points, labels and further elements that support the story, the aspects the readers should focus on, though this approach limits the navigability and users’ overall experience. The audience should be able to compare magnitudes and make inferences based on what is shown, and the accurate decoding shouldn’t be taken as given, especially when the audience can associate different meanings to what’s available and what’s missing. 

In decision-making, selecting only some well-chosen values or perspectives to show might increase the chances for a decision to be made, though is this equitable? Cherry-picking may be justified by the purpose, though is in general not a recommended practice! What is not shown can be as important as what is shown, and people should be aware of the implications!

One person’s noise can be another person’s signal. Patterns in the noise can provide more insight compared with the trends revealed in the "unnoisy" data shown! Probably such scenarios are rare, though it’s worth investigating what hides behind the noise. The choice of scale, the use of special types of visualizations or the building of models can reveal more. If it’s not possible to identify automatically such scenarios using the standard software, the users should have the possibility of changing the scale and perspective as seems fit. 

Identifying patterns in what seems random can prove to be a challenge no matter the context and the experience in the field. Occasionally, one might need to go beyond the general methods available and statistical packages can help when used intelligently. However, a presenter’s challenge is to find a plausible narrative around the findings and communicate it further adequately. Additional capabilities must be available to confirm the hypotheses framed and other aspects related to this approach.

It's ideal to build data models and a set of visualizations around them. Most probable some noise may be removed in the process, while other noise will be further investigated. However, this should be done through adjustable visual filters because what is removed can be important as well. Rare events do occur, probably more often than we are aware and they may remain hidden until we find the right perspective that takes them into consideration. 

Probably, some of the noise can be explained by special events that don’t need to be that rare. The challenge is to identify those parameters, associations, models and perspectives that reveal such insights. One’s gut feeling and experience can help in this direction, though novel scenarios can surprise us as well.

Not in every set of data one can find patterns, respectively a story trying to come out. Whether we can identify something worth revealing depends also on the data available at our disposal, respectively on whether the chosen data allow identifying significant patterns. Occasionally, the focus might be too narrow, too wide or too shallow. It’s important to look behind the obvious, to look at data from different perspectives, even if the data seems dull. It’s ideal to have the tools and knowledge needed to explore such cases and here the exposure to other real-life similar scenarios is probably critical!

𖣯Strategic Management: Strategic Perspectives (Part II: The Elephant in the Room)

Strategic Management Perspectives
Strategic Management Perspectives

There’s an ancient parable about several blind people who touch a shape they had never met before, an elephant, and try to identify what it is. The elephant is big, more than each person can sense through direct experience, and people’s experiences don’t correlate to the degree that they don’t trust each other, the situation escalating upon case. The moral of the parable is that we tend to claim (absolute) truths based on limited, subjective experience [1], and this can easily happen in business scenarios in which each of us has a limited view of the challenges we are facing individually and as a collective. 

The situation from the parable can be met in business scenarios, when we try to make sense of the challenges we are faced with, and we get only a limited perspective from the whole picture. Only open dialog and working together can get us closer to the solution! Even then, the accurate depiction might not be in sight, and we need to extrapolate the unknown further.  

A third-party consultant with experience might be the right answer, at least in theory, though experience and solutions are relative. The consultant might lead us in a direction, though from this to finding the answer can be a long way that requires experimentation, a mix of tactics and strategies that change over time, more sense-making and more challenges lying ahead. 

We would like a clear answer and a set of steps that lead us to the solution, though the answer is as usual, it depends! It depends on the various forces/drivers that have the biggest impact on the organization, on the context, on the organization’s goals, on the resources available directly or indirectly, on people’s capabilities, the occurrences of external factors, etc. 

In many situations the smartest thing to do is to gather information, respectively perspectives from all the parties. Tools like brainstorming, SWOT/PESTLE analysis or scenario planning can help in sense-making to identify the overall picture and where the gravity point lies. For some organizations the solution will be probably a new ERP system, or the redesign of some processes, introduction of additional systems to track quality, flow of material, etc. 

A new ERP system will not necessarily solve all the issues (even if that’s the expectation), and some organizations just try to design the old processes into a new context. Process redesign in some areas can be upon case a better approach, at least as primary measure. Otherwise, general initiatives focused on quality, data/information management, customer/vendor management, integrations, and the list remains open, can provide the binder/vehicle an organization needs to overcome the current challenges.

Conversely, if the ERP or other strategical systems are 10-20 years old, then there’s indeed an elephant in the room! Moreover, the elephant might be bigger than we can chew, and other challenges might lurk in its shadow(s). Everything is a matter of perspective with no apparent unique answer. Thus, finding an acceptable solution might lurk in the shadow of the broader perspective, in the cumulated knowledge of the people experiencing the issues, respectively in some external guidance. Unfortunately, the guides can be as blind as we are, making limited or no important impact. 

Sometimes, all it’s needed is a leap of faith corroborated with a set of tactics or strategies kept continuously in check, redirected as they seem fit based on the knowledge accumulated and the challenges ahead. It helps to be aware of how others approached the same issues. Unfortunately, there’s no answer that works for all! In this lies the challenge, in identifying what works and makes sense for us!

Previous Post <<||>> Next Post

Resources:
[1] Wikipedia (2024) Blind men and an elephant [link]


15 October 2024

🗄️Data Management: Data Governance (Part III: Taming the Complexity)

Data Management Series
Data Management Series

The Chief Data Officer (CDO) or the “Head of the Data Team” is one of the most challenging jobs because is more of a "political" than a technical role. It requires the ideal candidate to be able to throw and catch curved balls almost all the time, and one must be able to play ball with all the parties having an interest in data (aka stakeholders). It’s a full-time job that requires the combination of management and technical skillsets, and both are important! The focus will change occasionally in one direction more than in the other, with important fluctuations. 

Moreover, even if one masters the technical and managerial aspects, the combination of the two gives birth to situations that require further expertise – applied systems thinking being probably the most important. This, also because there are so many points of failure that it's challenging to address all the important causes. Therefore, it’s critical to be a system thinker, to have an experienced team and make use adequately of its experience! 

In a complex word, in which even the smallest constraint or opportunity can have an important impact especially when it’s involved in the early stages of the processes taking place in organizations. It relies on the manager’s and team’s skillset, their inspiration, the way the business reacts to the tasks involved and probably many other aspects that make things work. It takes considerable effort until the whole mechanism works, and even more time to make things work efficiently. The best metaphor is probably the one of a small combat team in which everybody has their place and skillset in the mechanism, independently if one talks about strategy, tactics or operations. 

Unfortunately, building such teams takes time, and the more people are involved, the more complex this endeavor becomes. The manager and the team must meet somewhere in the middle in what concerns the philosophy, the execution of the various endeavors, the way of working together to achieve the same goals. There are multiple forces pulling in all directions and it takes time until one can align the goals, respectively the effort. 

The most challenging forces are the ones between the business and the data team, respectively the business and data requirements, forces that don’t necessarily converge. Working in small organizations, the two parties have in theory more challenges to overcome the challenges and a team’s experience can weight a lot in the process, though as soon the scale changes, the number of challenges to be overcome changes exponentially (there are however different exponential functions in which the basis and exponent make the growth rapid). 

In big organizations can appear other parties that have the same force to pull the weight in one direction or another. Thus, the political aspects become more complex to the degree that the technologies must follow the political decisions, with all the positive and negative implications deriving from this. As comparison, think about the challenges from moving from two to three or more moving bodies orbiting each other, resulting in a chaotic dynamical system for most initial conditions. 

Of course, a business’ context doesn’t have to create such complexity, though when things are unchecked, when delays in decision-making as well as other typical events occur, when there’s no structure, strategy, coordinated effort, or any other important components, the chances for chaotic behavior are quite high with the pass of time. This is just a model to explain real life situations that seem similar on the surface but prove to be quite complex when diving deeper. That’s probably why a CDO’s role as tamer of complexity is important and challenging!

Previous Post <<||>> Next Post

11 October 2024

🧭Business Intelligence: Perspectives (Part 17: Creating Value for Organizations)

Business Intelligence Series
Business Intelligence Series

How does one create value for an organization in BI area? This should be one of the questions the BI professional should ask himself and eventually his/her colleagues on a periodic basis because the mere act of providing reports and good-looking visualizations doesn’t provide value per se. Therefore, it’s important to identify the critical to success and value drivers within each area!

One can start with the data, BI or IT strategies, when organizations invest the time in their direction, respectively with the considered KPIs and/or OKRs defined, and hopefully the organizations already have something similar in place! However, these are just topics that can be used to get a bird view over the overall landscape and challenges. It’s advisable to dig deeper, especially when the strategic, tactical and operational plans aren’t in sync, and let’s be realistic, this happens probably in many organizations, more often than one wants to admit!

Ideally, the BI professional should be able to talk with the colleagues who could benefit from having a set of reports or dashboards that offer a deeper perspective into their challenges. Talking with each of them can be time consuming and not necessarily value driven. However, giving each team or department the chance to speak their mind, and brainstorm what can be done, could in theory bring more value. Even if their issues and challenges should be reflected in the strategy, there’s always an important gap between the actual business needs and those reflected in formal documents, especially when the latter are not revised periodically. Ideally, such issues should be tracked back to a business goal, though it’s questionable how much such an alignment is possible in practice. Exceptions will always exist, no matter how well structured and thought a strategy is!

Unfortunately, this approach also involves some risks. Despite their local importance, the topics raised might not be aligned with what the organization wants, and there can be a strong case against and even a set of negative aspects related to this. However, talking about the costs involved by losing an opportunity can hopefully change the balance favorably. In general, transposing the perspective of issues into the area of their associated cost for the organization has (hopefully) the power to change people’s minds.

Organizations tend to bring forward the major issues, addressing the minor ones only after that, this having the effect that occasionally some of the small issues increase in impact when not addressed. It makes sense to prioritize with the risks, costs and quick wins in mind while looking at the broader perspective! Quick wins are usually addressed at strategic level, but apparently seldom at tactical and operational level, and at these levels one can create the most important impact, paving the way for other strategic measures and activities.

The question from the title is not limited only to BI professionals - it should be in each manager and every employee’s mind. The user is the closest to the problems and opportunities, while the manager is the one who has a broader view and the authority to push the topic up the waiting list. Unfortunately, the waiting lists in some organizations are quite big, while not having a good set of requests on the list might pinpoint that issues might exist in other areas!  

BI professionals and organizations probably know the theory well but prove to have difficulties in combining it with praxis. It’s challenging to obtain the needed impact (eventually the maximum effect) with a minimum of effort while addressing the different topics. Sooner or later the complexity of the topic kicks in, messing things around!

14 September 2024

🗄️Data Management: Data Governance (Part II: Heroes Die Young)

Data Management Series
Data Management Series

In the call for action there are tendencies in some organizations to idealize and overcharge main actors' purpose and image when talking about data governance by calling them heroes. Heroes are those people who fight for a goal they believe in with all their being and occasionally they pay the supreme tribute. Of course, the image of heroes is idealized and many other aspects are ignored, though such images sell ideas and ideals. Organizations might need heroes and heroic deeds to change the status quo, but the heroism doesn't necessarily payoff for the "heroes"! 

Sometimes, organizations need a considerable effort to change the status quo. It can be people's resistance to new, to the demands, to the ideas propagated, especially when they are not clearly explained and executed. It can be the incommensurable distance between the "AS IS" and the "TO BE" perspectives, especially when clear paths aren't in sight. It can be the lack of resources (e.g., time, money, people, tools), knowledge, understanding or skillset that makes the effort difficult. 

Unfortunately, such initiatives favor action over adequate strategies, planning and understanding of the overall context. The call do to something creates waves of actions and reactions which in the organizational context can lead to storms and even extreme behavior that ranges from resistance to the new to heroic deeds. Finding a few messages that support the call for action can help, though they can't replace the various critical for success factors.

Leading organizations on a new path requires a well-defined realistic strategy, respectively adequate tactical and operational planning that reflects organizations' specific needs, knowledge and capabilities. Just demanding from people to do their best is not enough, and heroism has chances to appear especially in this context. Unfortunately, the whole weight falls on the shoulders of the people chosen as actors in the fight. Ideally, it should be possible to spread the whole weight on a broader basis which should be considered the foundation for the new. 

The "heroes" metaphor is idealized and the negative outcome probably exaggerated, though extreme situations do occur in organizations when decisions, planning, execution and expectations are far from ideal. Ideal situations are met only in books and less in practice!

The management demands and the people execute, much like in the army, though by contrast people need to understand the reasoning behind what they are doing. Proper execution requires skillset, understanding, training, support, tools and the right resources for the right job. Just relying on people's professionalism and effort is not enough and is suboptimal, but this is what many organizations seem to do!

Organizations tend to respond to the various barriers or challenges with more resources or pressure instead of analyzing and depicting the situation adequately, and eventually change the strategy, tactics or operations accordingly. It's also difficult to do this as long an organization doesn't have the capabilities and practices of self-check, self-introspection, self-reflection, etc. Even if it sounds a bit exaggerated, an organization must know itself to overcome the various challenges. Regular meetings, KPIs and other metrics give the illusion of control when self-control is needed. 

Things don't have to be that complex even if managing data governance is a complex endeavor. Small or midsized organizations are in theory more capable to handle complexity because they can be more agile, have a robust structure and the flow of information and knowledge has less barriers, respectively a shorter distance to overcome, at least in theory. One can probably appeal to the laws and characteristics of networks to understand more about the deeper implications, of how solutions can be implemented in more complex setups.

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.