13 April 2024

R Language: Using the lessR Package in Microsoft Fabric's Notebooks (Test Drive)

I've started to use again the R languages for data visualizations. Discovering the lessR package, which simplifies considerably the verbose syntax of the R language by encapsulating the functionality behind simple functions, I wondered whether it can be installed in Microsoft Fabric and used from notebooks. Besides the available documentation, for learning I used also David W Berging's book on R visualizations [3].

Into a new notebook, I used one cell for each installation or package retrieval (see [1], [2]):

#installing packages
#install.packages("tidyverse") #is in Microsoft Fabric preinstalled
install.packages("lessR")

#retrieve packages from library
library("tidyverse")
library("lessR")

I attempted to read the data from a http location via the lessR Read function and it worked 

d <- Read("http://lessRstats.com/data/employee.xlsx")

head(d)

However, attempting to use any of the lessR functions used for visualization displayed only the text output and not the visualizations. No matter what I did - suppressing the text, suppressing the generation of PDF files, the result was the same. It seems to be a problem with the output device, though I'm not sure how to solve this yet. 

# supressing the text
style(quiet=TRUE)

# reenabling the text
style(quiet=FALSE)

# supressing PDF  generation
pdf(NULL)

# retrieving current device used 
options()$device

I was able to run the ggplot2 scripts from [3] though only when the lessR was also installed (each script should be run in its own cell, otherwise only the last plot is shown):

# bard charts 
ggplot(d) + geom_bar(aes(Dept)) 

# histogram
ggplot(d, aes(Salary)) + geom_histogram(binwidth=10000) 

# integrated violin/box/scatterplot
ggplot(d, aes(x="", y=Salary)) +
geom_violin(fill="gray90", bw=9500, alpha=.3) +
geom_boxplot(fill="gray75", outlier.color="black", width=0.25) +
geom_jitter(shape=16, position=position_jitter(0.05)) +
theme(axis.title.y=element_blank()) +
coord_flip()

# enhanced scatterplot 
ggplot(d, aes(Years, Salary)) + geom_point() +
geom_smooth(method=lm, color="black") +
stat_ellipse(type="norm") +
geom_vline(aes(xintercept=mean(Years, na.rm=TRUE)), color="gray70") +
geom_hline(aes(yintercept=mean(Salary), na.rm=TRUE), color="gray70")

Similar results could be obtained by using the following lessR syntax in RStudio:

# bard charts 
BarChart(Dept)

# histogram
Histogram(Salary) 

# integrated violin/box/scatterplot
Plot(Salary)

# enhanced scatterplot 
Plot(Years, Salary, enhance=TRUE)

Trying to see whether I can access the data from a lakehouse via SparkR, I've downloaded the file from the support website [3], loaded the data into an available lakehouse (e.g. UAT), respectiveley loaded the data to a new table:

-- creating the table
CREATE TABLE [dbo].[employee](
	[Name] [varchar](8000) NULL,
	[Years] [int] NULL,
	[Gender] [varchar](8000) NULL,
	[Dept] [varchar](8000) NULL,
	[Salary] [float] NULL,
	[JobSat] [varchar](8000) NULL,
	[Plan] [int] NULL,
	[Pre] [int] NULL,
	[Post] [int] NULL
) ON [PRIMARY]
GO

-- checking the data
SELECT *
FROM [dbo].[employee]

I was able to access the content of the imported file via the following script:

#access the file from lakehouse
#csv_file <- "https://onelake.dfs.fabric.microsoft.com/<file_system>/<account_name>/Files/OpenSource/employee.csv"
#csv_file <- "abfss://<file_system>.dfs.fabric.microsoft.com/<account_name>/Files/OpenSource/employee.csv"

csv_file <- "Files/OpenSource/employee.csv"

df <- read.df(csv_file, source= "csv", header = "true", inferSchema = "true")

display(df)

Initially, I wasn't able to access the table directly, though in the end I was able to retrieve the data (without and with the catalog's name):

# creating a data frame via SparkSQL
dfEmp <- sql("SELECT * FROM Employee")

head(dfEmp)

Comments:
1) Once the sessions timeout, it seems that one needs to rerun the scripts, which proves to be time-consuming as the installation takes about 5 minutes. 
2) Being able to use lessR directly in Microsoft Fabric could be a real win given its simple syntax. I run most of the tests from the book [3] plus some of the recommended scripts and the results are satisfactory. 
3) The connection via the ABFS path to the lakehouse works as well, but not via URL. 

References:
[1] Microsoft Learn - Microsoft Fabric (2023) R library management(link)
[2] lessR (2024) Data (link)
[3] David W Gerbing (2020) R Visualizations: Derive Meaning from Data
[4] CRAN=R (2024) Package lassR (link)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.