"The essential quality of graphic representations is clarity. If the diagram fails to give a clearer impression than the tables of figures it replaces, it is useless. To this end, we will avoid complicating the diagram by including too much data." (Armand Julin, "Summary for a Course of Statistics, General and Applied", 1910)
"Comparison between circles of different size should be absolutely avoided. It is inexcusable when we have available simple methods of charting so good and so convenient from every point of view as the horizontal bar." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"In general, the comparison of two circles of different size should be strictly avoided. Many excellent works on statistics approve the comparison of circles of different size, and state that the circles should always be drawn to represent the facts on an area basis rather than on a diameter basis. The rule, however, is not always followed and the reader has no way of telling whether the circles compared have been drawn on a diameter basis or on an area basis, unless the actual figures for the data are given so that the dimensions may be verified." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Judgment must be used in the showing of figures in any chart or numerical presentation, so that the figures may not give an appearance of greater accuracy than their method of collection would warrant. Too many otherwise excellent reports contain figures which give the impression of great accuracy when in reality the figures may be only the crudest approximations. Except in financial statements, it is a safe rule to use ciphers whenever possible at the right of all numbers of great size. The use of the ciphers greatly simplifies the grasping of the figures by the reader, and, at the same time, it helps to avoid the impression of an accuracy which is not warranted by the methods of collecting the data." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Many people use statistics as a drunkard uses a street lamp - for support rather than illumination. It is not enough to avoid outright falsehood; one must be on the alert to detect possible distortion of truth. One can hardly pick up a newspaper without seeing some sensational headline based on scanty or doubtful data." (Anna C Rogers, "Graphic Charts Handbook", 1961)
"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)
"If two or more data paths ate to appear on the graph. it is essential that these lines be labeled clearly, or at least a reference should be provided for the reader to make the necessary identifications. While clarity seems to be a most obvious goal. graphs with inadequate or confusing labeling do appear in publications, The user should not find identification of data paths troublesome or subject to misunderstanding. The designer normally should place no more than three data paths on the graph to prevent confusion - particularly if the data paths intersect at one or more points on the Cartesian plane." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)
"There are two kinds of misrepresentation. In one, the numerical data do not agree with the data in the graph, or certain relevant data are omitted. This kind of misleading presentation, while perhaps hard to determine, clearly is wrong and can be avoided. In the second kind of misrepresentation, the meaning of the data is different to the preparer and to the user." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)
"Do not allow data labels in the data region to interfere with the quantitative data or to clutter the graph. […] Avoid putting notes, keys, and markers in the data region. Put keys and markers just outside the data region and put notes in the legend or in the text." (William S Cleveland, "The Elements of Graphing Data", 1985)
"Make the data stand out and avoid superfluity are two broad strategies that serve as an overall guide to the specific principles […] The data - the quantitative and qualitative information in the data region - are the reason for the existence of the graph. The data should stand out. […] We should eliminate superfluity in graphs. Unnecessary parts of a graph add to the clutter and increase the difficulty of making the necessary elements - the data - stand out." (William S Cleveland, "The Elements of Graphing Data", 1985)
"Labels should be complete but succinct. Long and complicated labels will defeat the viewer and therefore the purpose of the graph. Treat a label as a cue to jog the memory or to complete comprehension. Shorten long labels; avoid abbreviations unless they are universally understood; avoid repetition on the same graph. A title, for instance, should not repeat what is already in the axis labels. Be consistent in terminology." (Mary H Briscoe, "Preparing Scientific Illustrations: A guide to better posters, presentations, and publications" 2nd ed., 1995)
"Principal components and factor analysis are methods for data reduction. They seek a few underlying dimensions that account for patterns of variation among the observed variables underlying dimensions imply ways to combine variables, simplifying subsequent analysis. For example, a few combined variables could replace many original variables in a regression. Advantages of this approach include more parsimonious models, improved measurement of indirectly observed concepts, new graphical displays, and the avoidance of multicollinearity." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)
"Graphical illustrations should be simple and pleasing to the eye, but the presentation must remain scientific. In other words, we want to avoid those graphical features that are purely decorative while keeping a critical eye open for opportunities to enhance the scientific inference we expect from the reader. A good graphical design should maximize the proportion of the ink used for communicating scientific information in the overall display." (Phillip I Good & James W Hardin, "Common Errors in Statistics" (and How to Avoid Them)", 2003)
"These questions can be applied to every kind of problem. They measure the usefulness of whatever construction or graphical invention allowing you to avoid useless graphics." (Jacques Bertin [interview], 2003)
"Use a scale break only when necessary. If a break cannot be avoided, use a full scale break. Taking logs can cure the need for a break." (Naomi B Robbins, "Creating More effective Graphs", 2005)
"Conflicting with the idea of integrating evidence regardless of its these guidelines provoke several issues: First, labels are data. even intriguing data. [...] Second, when labels abandon the data points, then a code is often needed to relink names to numbers. Such codes, keys, and legends are impediments to learning, causing the reader's brow to furrow. Third, segregating nouns from data-dots breaks up evidence on the basis of mode" (verbal vs. nonverbal), a distinction lacking substantive relevance. Such separation is uncartographic; contradicting the methods of map design often causes trouble for any type of graphical display. Fourth, design strategies that reduce data-resolution take evidence displays in the wrong direction. Fifth, what clutter? Even this supposedly cluttered graph clearly shows the main ideas: brain and body mass are roughly linear in logarithms, and as both variables increase, this linearity becomes less tight." (Edward R Tufte, "Beautiful Evidence", 2006) [argumentation against Cleveland's recommendation of not using words on data plots]
"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more diff i cult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)
"Numerical precision should be consistent throughout and summary statistics such as means and standard deviations should not have more than one extra decimal place" (or significant digit) compared to the raw data. Spurious precision should be avoided although when certain measures are to be used for further calculations or when presenting the results of analyses, greater precision may sometimes be appropriate." (Jenny Freeman et al, "How to Display Data", 2008)
"The data [in tables] should not be so spaced out that it is difficult to follow or so cramped that it looks trapped. Keep columns close together; do not spread them out more than is necessary. If the columns must be spread out to fit a particular area, such as the width of a page, use a graphic device such as a line or screen to guide the reader’s eye across the row." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)
"Dealing with a circular visualization and trying to compare its radial portions is always problematic. When designing with data, the story should always be told as clearly as possible. To do so, it is often best to avoid round charts and graphs." (Brian Suda, "A Practical Guide to Designing with Data", 2010)
"We naturally draw conclusions from what we see […]. We should also think about what we do not see […]. The unseen data may be just as important, or even more important, than the seen data. To avoid survivor bias, start in the past and look forward." (Gary Smith, "Standard Deviations", 2014)
"A semantic approach to visualization focuses on the interplay between charts, not just the selection of charts themselves. The approach unites the structural content of charts with the context and knowledge of those interacting with the composition. It avoids undue and excessive repetition by instead using referential devices, such as filtering or providing detail-on-demand. A cohesive analytical conversation also builds guardrails to keep users from derailing from the conversation or finding themselves lost without context. Functional aesthetics around color, sequence, style, use of space, alignment, framing, and other visual encodings can affect how users follow the script." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)