"Heuristic reasoning is reasoning not regarded as final and strict but as provisional and plausible only, whose purpose is to discover the solution of the present problem. We are often obliged to use heuristic reasoning. We shall attain complete certainty when we shall have obtained the complete solution, but before obtaining certainty we must often be satisfied with a more or less plausible guess. We may need the provisional before we attain the final. We need heuristic reasoning when we construct a strict proof as we need scaffolding when we erect a building." (George Pólya, "How to Solve It", 1945)
"The aim of heuristics is to study the methods and rules of discovery and invention. [...] Heuristic, as an adjective, means 'serving to discover'." (George Pólya, "How to Solve It", 1945)
"An algorithm gives you the instructions directly. A
heuristic tells you how to discover the instructions for yourself, or at least
where to look for them." (Steve McConnell, "Code Complete", 1993)
"Heuristic (it is of Greek origin) means discovery. Heuristic methods are based on experience, rational ideas, and rules of thumb. Heuristics are based more on common sense than on mathematics. Heuristics are useful, for example, when the optimal solution needs an exhaustive search that is not realistic in terms of time. In principle, a heuristic does not guarantee the best solution, but a heuristic solution can provide a tremendous shortcut in cost and time." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)
"Heuristic methods may aim at local optimization rather than at global optimization, that is, the algorithm optimizes the solution stepwise, finding the best solution at each small step of the solution process and 'hoping' that the global solution, which comprises the local ones, would be satisfactory." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)
"Models of bounded rationality describe how a judgement or decision is reached (that is, the heuristic processes or proximal mechanisms) rather than merely the outcome of the decision, and they describe the class of environments in which these heuristics will succeed or fail." (Gerd Gigerenzer & Reinhard Selten [Eds., "Bounded Rationality: The Adaptive Toolbox", 2001)
"A heuristic is a rule applied to an existing solution represented in a perspective that generates a new (and hopefully better) solution or a new set of possible solutions." (Scott E Page, "The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools and Societies", 2008)
"There are two parts to learning craftsmanship: knowledge and
work. You must gain the knowledge of principles, patterns, practices, and
heuristics that a craftsman knows, and you must also grind that knowledge into
your fingers, eyes, and gut by working hard and practicing." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)
"A second class of metaphors - mathematical algorithms, heuristics, and models - brings us closer to the world of computer science programs, simulations, and approximations of the brain and its cognitive processes." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)
"[...] heuristics are simple, efficient rules - either hard-wired in our brains or learned - that kick in especially when we're facing problems with incomplete information." (David DiSalvo, "What Makes Your Brain Happy and Why You Should Do the Opposite", 2011)
"This is the essence of intuitive heuristics: when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution." (Daniel Kahneman, "Thinking, Fast and Slow", 2011)
"Heuristics are simplified rules of thumb that make things simple and easy to implement. But their main advantage is that the user knows that they are not perfect, just expedient, and is therefore less fooled by their powers. They become dangerous when we forget that." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)
"A good heuristic decision is made by 1) knowing what to look for, 2) knowing when enough information is enough (the 'threshold of decision' ), and 3) knowing what decision to make." (Patrick Van Horne, "Left of Bang", 2014)
"Heuristic decision making is fast and frugal and is often based on the evaluation of one or two salient bits of information." (Amitav Chakravarti, "Why People (Don’t) Buy: The Go and Stop Signals", 2015)
"A heuristic is a strategy we derive from previous experience with a similar problem." (Darius Foroux, "Think Straight", 2017)
More quotes on "Heuristic" at the-web-of-knowledge.blogspot.com.
No comments:
Post a Comment