26 December 2007

🏗️Software Engineering: Programing Languages (Just the Quotes)

"The establishment of formal standards for proofs about programs [...] and the proposal that the semantics of a programming language may be defined independently of all processors for that language, by establishing standards of rigor for proofs about programs in the language, appears to be novel." (Robert Floyd, "Assigning Meanings to Programs", 1967)

"Computer languages of the future will be more concerned with goals and less with procedures specified by the programmer." (Marvin Minsky, "Form and Content in Computer Science", [Turing Award lecture] 1969)

"There is no programming language, no matter how structured, that will prevent programmers from making bad programs." (Larry Flon, "On research in structured programming", SIGPLAN 10(10), 1975)

"Most programming languages are decidedly inferior to mathematical notation and are little used as tools of thought in ways that would be considered significant by, say, an applied mathematician." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979)

"The properties of executability and universality associated with programming languages can be combined, in a single language, with the well-known properties of mathematical notation which make it such an effective tool of thought." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979)

"A language that doesn't affect the way you think about programming, is not worth knowing." (Alan Perlis, "Epigrams on Programming", 1982)

"A programming language is low level when its programs require attention to the irrelevant." (Alan J Perlis, "Epigrams on Programming", 1982)

"Some programming languages manage to absorb change, but withstand progress." (Alan J Perlis, "Epigrams on Programming", 1982)

"The only way to learn a new programming language is by writing programs in it." (Dennis Ritchie, "C Programming Language", 1988)

"A programming language is like a natural, human language in that it favors certain methaphors, images, and ways of thinking." (Seymour Papert, "Mindstorms: Children, Computers, And Powerful Ideas", 1993) 

"Although mathematical notation undoubtedly possesses parsing rules, they are rather loose, sometimes contradictory, and seldom clearly stated. [...] The proliferation of programming languages shows no more uniformity than mathematics. Nevertheless, programming languages do bring a different perspective. [...] Because of their application to a broad range of topics, their strict grammar, and their strict interpretation, programming languages can provide new insights into mathematical notation." (Kenneth E Iverson, "Math for the Layman", 1999) 

"Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock, "Object-oriented Design: A responsibility-driven approach", 1989)

"Computer programs are complex by nature. Even if you could invent a programming language that operated exactly at the level of the problem domain, programming would be complicated because you would still need to precisely define relationships between real-world entities, identify exception cases, anticipate all possible state transitions, and so on. Strip away the accidental work involved in representing these factors in a specific programming language and in a specific computing environment, and you still have the essential difficulty of defining the underlying real-world concepts and debugging your understanding of them." (Steve C McConnell," After the Gold Rush : Creating a True Profession of Software Engineering", 1999)

“The precision provided (or enforced) by programming languages and their execution can identify lacunas, ambiguities, and other areas of potential confusion in conventional [mathematical] notation." (Kenneth E Iverson, "Math for the Layman", 1999)

"Programming languages on the whole are very much more complicated than they used to be: object orientation, inheritance, and other features are still not really being thought through from the point of view of a coherent and scientifically well-based discipline or a theory of correctness. My original postulate, which I have been pursuing as a scientist all my life, is that one uses the criteria of correctness as a means of converging on a decent programming language design - one which doesn’t set traps for its users, and ones in which the different components of the program correspond clearly to different components of its specification, so you can reason compositionally about it. [...] The tools, including the compiler, have to be based on some theory of what it means to write a correct program." (Charles A R Hoare, [interview] 2002)

"A programming language is for thinking of programs, not for expressing programs you've already thought of." (Paul Graham, "Hackers and Painters", 2003)

"All OO languages show some tendency to suck programmers into the trap of excessive layering. Object frameworks and object browsers are not a substitute for good design or documentation, but they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see down through them and mentally model what the code is actually doing. The Rules of Simplicity, Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and continuing maintenance problems." (Eric S Raymond, "The Art of Unix Programming", 2003)

"Few classical programmers found prototypal inheritance to be acceptable, and classically inspired syntax obscures the language’s true prototypal nature. It is the worst of both worlds." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"Most programming languages contain good parts and bad parts. I discovered that I could be better programmer by using only the good parts and avoiding the bad parts." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"Programmers need to be fluent in the language of the machine, whether real or virtual, and in the abstractions that can be related to that language via development tools. It is important to learn many different abstractions, otherwise some ideas become incredibly hard to express. Good programmers need to be able to stand outside their daily routine, to be aware of other languages that are expressive for other purposes. The time always comes when this pays off." (Klaus Marquardt, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.