01 December 2007

🏗️Software Engineering: Assumptions (Just the Quotes)

"At the heart of reengineering is the notion of discontinuous thinking - of recognizing and breaking away from the outdated rules and fundamental assumptions that underlie operations. Unless we change these rules, we are merely rearranging the deck chairs on the Titanic. We cannot achieve breakthroughs in performance by cutting fat or automating existing processes. Rather, we must challenge old assumptions and shed the old rules that made the business underperform in the first place." (Michael M Hammer, "Reengineering Work: Don't Automate, Obliterate", Magazine, 1990)

"Design bugs are often subtle and occur by evolution with early assumptions being forgotten as new features or uses are added to systems." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"All things which are proved to be impossible must obviously rest on some assumptions, and when one or more of these assumptions are not true then the impossibility proof fails - but the expert seldom remembers to carefully inspect the assumptions before making their 'impossible' statements." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"We build models to increase productivity, under the justified assumption that it's cheaper to manipulate the model than the real thing. Models then enable cheaper exploration and reasoning about some universe of discourse. One important application of models is to understand a real, abstract, or hypothetical problem domain that a computer system will reflect. This is done by abstraction, classification, and generalization of subject-matter entities into an appropriate set of classes and their behavior." (Stephen J Mellor, "Executable UML: A Foundation for Model-Driven Architecture", 2002)

"When we set out to write software, we never know enough. Knowledge on the project is fragmented, scattered among many people and documents, and it’s mixed with other information so that we don’t even know which bits of knowledge we really need. Domains that seem less technically daunting can be deceiving: we don’t realize how much we don’t know. This ignorance leads us to make false assumptions" (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Because it so often takes ages before a new piece of software is ready for anyone to use, programmers often test their assumptions against 'use cases' hypothetical scenarios about how imaginary people might need or want to use a program." (Scott Rosenberg, "Dreaming in Code", 2007)

"Every piece of code is built upon a platform of myriad assumptions - things that have to be true for it to behave as expected. More often than not, bugs arise because one or more of these assumptions are violated or turn out to be mistaken." (Paul Butcher, "Debug It! Find, Repair, and Prevent Bugs in Your Code", 2009)

"Everything you do is based upon a foundation of assumptions. You can’t possibly avoid making them, and it’s crazy to try - you can’t work from first principles every time. But assumptions are dangerous, because they create blind spots - things you treat as true without necessarily having direct evidence." (Paul Butcher, "Debug It! Find, Repair, and Prevent Bugs in Your Code", 2009)

"Different tools may rely on different assumptions about their context - e.g., surrounding infrastructure, control model, data model, communication protocols, etc. - which can lead to an architectural mismatch between the application and the tools. Such a mismatch leads to hacks and workarounds that will make the code more complex than necessary." (Giovanni Asproni [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010]) 

"The fundamental assumption underlying all software projects is that software is easy to change. If you violate this assumption by creating inflexible structures, then you undercut the economic model that the entire industry is based on." (Robert C Martin, "The Clean Coder: A code of conduct for professional programmers", 2011)

"An architecture that scales well for a particular application is built around assumptions of which operations will be common and which will be rare - the load parameters. If those assumptions turn out to be wrong, the engineering effort for scaling is at best wasted, and at worst counterproductive." (Martin Kleppmann, "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems", 2015)

"It would be unwise to assume that faults are rare and simply hope for the best. It is important to consider a wide range of possible faults - even fairly unlikely ones - and to artificially create such situations in your testing environment to see what happens. In distributed systems, suspicion, pessimism, and paranoia pay off." (Martin Kleppmann, "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems", 2015)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.