"Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced." (William Playfair, "The Commercial and Political Atlas", 1786)
"Graphic methods convey to the mind a more comprehensive grasp of essential features than do written reports, because one can naturally gather interesting details from a picture in far less time than from a written description. Further than this, the examination of a picture allows one to make deductions of his own, while in the case of a written description the reader must, to a great degree, accept the conclusions of the author." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)
"In many presentations it is not a question of saving time to the reader but a question of placing the arguments in such form that results may surely be obtained. For matters affecting public welfare, it is hard to estimate the benefits which may accrue if a little care be used in presenting data so that they will be convincing to the reader." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"It should be a strict rule for all kinds of curve plotting that the horizontal scale must be used. for the independent variable and the vertical scale for the dependent variable. When the curves are plotted by this rule the reader can instantly select a set of conditions from the horizontal scale and read the information from the vertical scale. If there were no rule relating to the arrangement of scales for the independent and dependent variables, the reader would never be able to tell whether he should approach a chart from the vertical scale and read the information from the horizontal scale, or the reverse." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Sometimes the scales of these accompanying charts are so large that the reader is puzzled to get clearly in his mind what the whole chart is driving at. There is a possibility of making a simple chart on such a large scale that the mere size of the chart adds to its complexity by causing the reader to glance from one side of the chart to the other in trying to get a condensed visualization of the chart." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Unlimited numbers of reports, magazines, and newspapers are now giving us reams of quantitative facts. If the facts were put in graphic form, not only would there be a great saving in the time of the readers but there would be infinite gain to society, because more facts could be absorbed and with less danger of misinterpretation. Graphic methods usually require no more space than is needed if the facts are presented in the form of words. In many cases, the graphic method requires less space than is required for words and there is, besides, the great advantage that with graphic methods facts are presented so that the reader may make deductions of his own, while when words are used the reader must usually accept the ready-made conclusions handed to him." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Readers of statistical diagrams should not be required to compare magnitudes in more than one dimension. Visual comparisons of areas are particularly inaccurate and should not be necessary in reading any statistical graphical diagram." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)
"Graphic charts have often been thought to be tools of those alone who are highly skilled in mathematics, but one needs to have a knowledge of only eighth-grade arithmetic to use intelligently even the logarithmic or ratio chart, which is considered so difficult by those unfamiliar with it. […] If graphic methods are to be most effective, those who are unfamiliar with charts must give some attention to their fundamental structure. Even simple charts may be misinterpreted unless they are thoroughly understood. For instance, one is not likely to read an arithmetic chart correctly unless he also appreciates the significance of a logarithmic chart." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)
"The eye can accurately appraise only very few features of a diagram, and consequently a complicated or confusing diagram will lead the reader astray. The fundamental rule for all charting is to use a plan which is simple and which takes account, in its arrangement of the facts to be presented, of the above-mentioned capacities of the eye. " (William L Crum et al, "Introduction to Economic Statistics", 1938)
"[…] statistical literacy. That is, the ability to read diagrams and maps; a 'consumer' understanding of common statistical terms, as average, percent, dispersion, correlation, and index number. " (Douglas Scates, "Statistics: The Mathematics for Social Problems", 1943)
"Admittedly a chart is primarily a picture, and for presentation purposes should be treated as such; but in most charts it is desirable to be able to read the approximate magnitudes by reference to the scales. Such reference is almost out of the question without some rulings to guide the eye. Second, the picture itself may be misleading without enough rulings to keep the eye 'honest'. Although sight is the most reliable of our senses for measuring" (and most other) purposes, the unaided eye is easily deceived; and there are numerous optical illusions to prove it. A third reason, not vital, but still of some importance, is that charts without rulings may appear weak and empty and may lack the structural unity desirable in any illustration." (Kenneth W Haemer, "Hold That Line. A Plea for the Preservation of Chart Scale Ruling", The American Statistician Vol. 1" (1) 1947)
"[…] many readers are confused by the presence of two scales, and either use the wrong one or simply disregard both. Also, the general reader has the disconcerting habit of believing that because one curve is higher than another, it is also larger in magnitude. This leads to all sorts of misconceptions." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2" (3) , 1948)
"Besides being easier to construct than a bar chart, the line chart possesses other advantages. It is easier to read, for while the bars stand out more prominently than the line, they tend to become confusing if numerous, and especially so when they record alternate increase and decrease. It is easier for the eye to follow a line across the face of the chart than to jump from bar top to bar top, and the slope of the line connecting two points is a great aid in detecting minor changes. The line is also more suggestive of movement than arc bars, and movement is the very essence of a time series. Again, a line chart permits showing two or more related variables on the same chart, or the same variable over two or more corresponding periods." (Walter E Weld, "How to Chart; Facts from Figures with Graphs", 1959)
"Circles of different size, however cannot properly be used to compare the size of different totals. This is because the reader does not know whether to compare the diameters or the areas" (which vary as the squares of the diameters), and is likely to misjudge the comparison in either ease. Usually the circles are drawn so that their diameters are in correct proportion to each other; but then the area comparison is exaggerated. Component bars should be used to show totals of different size since their one dimension lengths can be easily judged not only for the totals themselves but for the component parts as well. Circles, therefore, can show proportions properly by variations in angles of sectors but not by variations in diameters. " (Anna C Rogers, "Graphic Charts Handbook", 1961)
"In line charts the grid structure plays a controlling role in interpreting facts. The number of vertical rulings should be sufficient to indicate the frequency of the plottings, facilitate the reading of the time values on the horizontal scale. and indicate the interval or subdivision of time." (Anna C Rogers, "Graphic Charts Handbook", 1961)
"The use of trivial data - particularly in graphic presentation - can easily tire the reader so that he soon becomes disinterested. Graphs should be for information considered highly significant. not for unimportant points." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)
"A graph presents a limited number of figures in a bold and forceful manner. To do this it usually must omit a large number of figures available on the subject. The choice of what graphic format to use is largely a matter of deciding what figures have the greatest significance to the intended reader and what figures he can best afford to skip." (Peter H Selby, "Interpreting Graphs and Tables", 1976)
"Graphic forms help us to perform and influence two critical functions of the mind: the gathering of information and the processing of that information. Graphs and charts are ways to increase the effectiveness and the efficiency of transmitting information in a way that enhances the reader's ability to process that information. Graphics are tools to help give meaning to information because they go beyond the provision of information and show relationships, trends, and comparisons. They help to distinguish which numbers and which ideas are more important than others in a presentation." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)
"Some believe that the vertical bar should be used when comparing similar items for different time periods and the horizontal bar for comparing different items for the same time period. However, most people find the vertical-bar format easier to prepare and read. and a more effective way to show most types of comparisons." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)
"The preparation of well-designed graphics is both an art and a skill. There are many different ways to go about the task, and readers are urged to develop their own approaches. Graphics can be creative and fun. At the same time, they require a degree of orderly and systematic work." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)
"Unlike some art forms. good graphics should be as concrete, geometrical, and representational as possible. A rectangle should be drawn as a rectangle, leaving nothing to the reader's imagination about what you are trying to portray. The various lines and shapes used in a graphic chart should be arranged so that it appears to be balanced. This balance is a result of the placement of shapes and lines in an orderly fashion." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)
"The bar graph and the column graph are popular because they are simple and easy to read. These are the most versatile of the graph forms. They can be used to display time series, to display the relationship between two items, to make a comparison among several items, and to make a comparison between parts and the whole" (total). They do not appear to be as 'statistical', which is an advantage to those people who have negative attitudes toward statistics. The column graph shows values over time, and the bar graph shows values at a point in time. bar graph compares different items as of a specific time" (not over time)." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)
"The scales used are important; contracting or expanding the vertical or horizontal scales will change the visual picture. The trend lines need enough grid lines to obviate difficulty in reading the results properly. One must be careful in the use of cross-hatching and shading, both of which can create illusions. Horizontal rulings tend to reduce the appearance. while vertical lines enlarge it. In summary, graphs must be reliable, and reliability depends not only on what is presented but also on how it is presented." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)
"[…] the partial scale break is a weak indicator that the reader can fail to appreciate fully; visually the graph is still a single panel that invites the viewer to see, inappropriately, patterns between the two scales. […] The partial scale break also invites authors to connect points across the break, a poor practice indeed; […]" (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38" (4) 1984)
"The effective communication of information in visual form, whether it be text, tables, graphs, charts or diagrams, requires an understanding of those factors which determine the 'legibility', 'readability' and 'comprehensibility', of the information being presented. By legibility we mean: can the data be clearly seen and easily read? By readability we mean: is the information set out in a logical way so that its structure is clear and it can be easily scanned? By comprehensibility we mean: does the data make sense to the audience for whom it is intended? Is the presentation appropriate for their previous knowledge, their present information needs and their information processing capacities?" (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)
"Wherever possible, numerical tables should be explicit rather than implicit, i.e. the information should be given in full. In an implicit table, the reader may be required to add together two values in order to obtain a third which is not explicitly stated in the table. […] Implicit tables save space, but require more effort on the part of the reader and may cause confusion and errors. They are particularly unsuitable for slides and other transient displays." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)
"A chart is a bridge between you and your readers. It reveals your skills at comprehending the source information, at mastering presentation methods and at producing the design. Its success depends a great deal on your readers ' understanding of what you are saying, and how you are saying it. Consider how they will use your chart. Will they want to find out from it more information about the subject? Will they just want a quick impression of the data? Or will they use it as a source for their own analysis? Charts rely upon a visual language which both you and your readers must understand." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)
"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)
"Gray grids almost always work well and, with a delicate line, may promote more accurate data reading and reconstruction than a heavy grid. Dark grid lines are chartjunk. When a graphic serves as a look-up table" (rare indeed), then a grid may help with reading and interpolation. But even then the grid should be muted relative to the data." (Edward R Tufte, "Envisioning Information", 1990)
"What about confusing clutter? Information overload? Doesn't data have to be ‘boiled down’ and ‘simplified’? These common questions miss the point, for the quantity of detail is an issue completely separate from the difficulty of reading. Clutter and confusion are failures of design, not attributes of information." (Edward R Tufte, "Envisioning Information", 1990)
"The illusion of randomness gradually disappears as the skill in chart reading improves." (John W Murphy, "Technical Analysis of the Financial Markets", 1999)
"Displaying numerical information always involves selection. The process of selection needs to be described so that the reader will not be misled." (Gerald van Belle, "Statistical Rules of Thumb", 2002)
"Diagrams are a means of communication and explanation, and they facilitate brainstorming. They serve these ends best if they are minimal. Comprehensive diagrams of the entire object model fail to communicate or explain; they overwhelm the reader with detail and they lack meaning." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)
"Data often arrive in raw form, as long lists of numbers. In this case your job is to summarize the data in a way that captures its essence and conveys its meaning. This can be done numerically, with measures such as the average and standard deviation, or graphically. At other times you find data already in summarized form; in this case you must understand what the summary is telling, and what it is not telling, and then interpret the information for your readers or viewers." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)
"Merely drawing a plot does not constitute visualization. Visualization is about conveying important information to the reader accurately. It should reveal information that is in the data and should not impose structure on the data." (Robert Gentleman, "Bioinformatics and Computational Biology Solutions using R and Bioconductor", 2005)
"The percentage is one of the best" (mathematical) friends a journalist can have, because it quickly puts numbers into context. And it's a context that the vast majority of readers and viewers can comprehend immediately." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)
"Sparklines are word-like graphics, With an intensity of visual distinctions comparable to words and letters. [...] Words visually present both an overall shape and letter-by-letter detail; since most readers have seen the word previously, the visual task is usually one of quick recognition. Sparklines present an overall shape and aggregate pattern along with plenty of local detail. Sparklines are read the same way as words, although much more carefully and slowly." (Edward R Tufte, "Beautiful Evidence", 2006)
"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008)
"Tables work in a variety of situations because they convey large amounts of data in a condensed fashion. Use tables in the following situations: (1) to structure data so the reader can easily pick out the information desired, (2) to display in a chart when the data contains too many variables or values, and (3) to display exact values that are more important than a visual moment in time." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)
"For a visual to qualify as beautiful, it must be aesthetically pleasing, yes, but it must also be novel, informative, and efficient. [...] For a visual to truly be beautiful, it must go beyond merely being a conduit for information and offer some novelty: a fresh look at the data or a format that gives readers a spark of excitement and results in a new level of understanding. Well-understood formats" (e.g., scatterplots) may be accessible and effective, but for the most part they no longer have the ability to surprise or delight us. Most often, designs that delight us do so not because they were designed to be novel, but because they were designed to be effective; their novelty is a byproduct of effectively revealing some new insight about the world." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)
"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)
"Bear in mind is that the use of color doesn’t always help. Use it sparingly and with a specific purpose in mind. Remember that the reader’s brain is looking for patterns, and will expect both recurrence itself and the absence of expected recurrence to carry meaning. If you’re using color to differentiate categorical data, then you need to let the reader know what the categories are. If the dimension of data you’re encoding isn’t significant enough to your message to be labeled or explained in some way - or if there is no dimension to the data underlying your use of difference colors - then you should limit your use so as not to confuse the reader." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)
"Communication is the primary goal of data visualization. Any element that hinders - rather than helps - the reader, then, needs to be changed or removed: labels and tags that are in the way, colors that confuse or simply add no value, uncomfortable scales or angles. Each element needs to serve a particular purpose toward the goal of communicating and explaining information. Efficiency matters, because if you’re wasting a viewer’s time or energy, they’re going to move on without receiving your message." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)
"Graphics, charts, and maps aren’t just tools to be seen, but to be read and scrutinized. The first goal of an infographic is not to be beautiful just for the sake of eye appeal, but, above all, to be understandable first, and beautiful after that; or to be beautiful thanks to its exquisite functionality." (Alberto Cairo, "The Functional Art", 2011)
"A viewer’s eye must be guided to 'read' the elements in a logical order. The design of an exploratory graphic needs to allow for the additional component of discovery - guiding the viewer to first understand the overall concept and then engage her to further explore the supporting information." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)
"Explanatory data visualization is about conveying information to a reader in a way that is based around a specific and focused narrative. It requires a designer-driven, editorial approach to synthesize the requirements of your target audience with the key insights and most important analytical dimensions you are wishing to convey." (Andy Kirk, "Data Visualization: A successful design process", 2012)
"Infographics combine data with design to enable visual learning. This communication process helps deliver complex information in a way that is more quickly and easily understood. [...] In an era of data overload, infographics offer your audience information in a format that is easy to consume and share. [...] A well-placed, self-contained infographic addresses our need to be confident about the content we’re sharing. Infographics relay the gist of your information quickly, increasing the chance for it to be shared and fueling its spread across a wide variety of digital channels." (Mark Smiciklas, "The Power of Infographics: Using Pictures to Communicate and Connect with Your Audiences", 2012)
"Leading your reader to the watering hole will come with experience. You don’t want to get too far ahead of the reader, but you don’t want to fall behind the reader’s expectations. And remember, an audience - the reader - is not monolithic; your target audience has different levels of understanding, comprehension, and need. Use your voice judiciously to bring your readers along with you." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012)
"Context (information that lends to better understanding the who, what, when, where, and why of your data) can make the data clearer for readers and point them in the right direction. At the least, it can remind you what a graph is about when you come back to it a few months later. […] Context helps readers relate to and understand the data in a visualization better. It provides a sense of scale and strengthens the connection between abstract geometry and colors to the real world." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)
"Readability in visualization helps people interpret data and make conclusions about what the data has to say. Embed charts in reports or surround them with text, and you can explain results in detail. However, take a visualization out of a report or disconnect it from text that provides context" (as is common when people share graphics online), and the data might lose its meaning; or worse, others might misinterpret what you tried to show." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)
"A great infographic leads readers on a visual journey, telling them a story along the way. Powerful infographics are able to capture people’s attention in the first few seconds with a strong title and visual image, and then reel them in to digest the entire message. Infographics have become an effective way to speak for the creator, conveying information and image simultaneously." (Justin Beegel, "Infographics For Dummies", 2014)
"If I had to pick a single go-to graph for categorical data, it would be the horizontal bar chart, which flips the vertical version on its side. Why? Because it is extremely easy to read. The horizontal bar chart is especially useful if your category names are long, as the text is written from left to right, as most audiences read, making your graph legible for your audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)
"The unique thing you get with a pie chart is the concept of there being a whole and, thus, parts of a whole. But if the visual is difficult to read, is it worth it?" (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)
"A well-designed graph clearly shows you the relevant end points of a continuum. This is especially important if you’re documenting some actual or projected change in a quantity, and you want your readers to draw the right conclusions. […]" (Daniel J Levitin, "Weaponized Lies", 2017)
"Too many simultaneous encodings will be overwhelming to the reader; colors must be easily distinguishable, and of a small enough number that the reader can interpret them. " (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)
"A map by itself requires little explanation, but once data are superimposed, readers will probably need labels on the maps, and legends explaining encodings like the color of markers." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"Dashboards are collections of several linked visualizations all in one place. The idea is very popular as part of business intelligence: having current data on activity summarized and presented all inone place. One danger of cramming a lot of disparate information into one place is that you will quickly hit information overload. Interactivity and small multiples are definitely worth considering as ways of simplifying the information a reader has to digest in a dashboard. As with so many other visualizations, layering the detail for different readers is valuable." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"Effective data scientists know that they are trying to convey accurate information in an easily understood way. We have never seen a pie chart that was an improvement over a simple table. Even worse, the creative addition of pictures, colors, shading, blots, and splotches may produce chartjunk that confuses the reader and strains the eyes." (Gary Smith & Jay Cordes, "The 9 Pitfalls of Data Science", 2019)
"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"The term 'infographics' is used for eye-catching diagrams which get a simple message across. They are very popular in advertising and can convey an impression of scientific, reliable information, but they are not the same thing as data visualization. An infographic will typically only convey a few numbers, and not use visual presentations to allow the reader to make comparisons of their own." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"Well-designed data graphics provide readers with deeper and more nuanced perspectives, while promoting the use of quantitative information in understanding the world and making decisions." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)
"Clutter is the main issue to keep in mind when assessing whether a paired bar chart is the right approach. With too many bars, and especially when there are more than two bars for each category, it can be difficult for the reader to see the patterns and determine whether the most important comparison is between or within the different categories." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)
"Data visualization is a mix of science and art. Sometimes we want to be closer to the science side of the spectrum - in other words, use visualizations that allow readers to more accurately perceive the absolute values of data and make comparisons. Other times we may want to be closer to the art side of the spectrum and create visuals that engage and excite the reader, even if they do not permit the most accurate comparisons." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)
"Before even thinking about charts, it should be recognised that the table on its own is extremely useful. Its clear structure, with destination regions organised in columns and origins in rows, allows the reader to quickly look up any value - including totals - quickly and precisely. That’s what tables are good for. The deficiency of the table, however, is in identifying patterns within the data. Trying to understand the relationships between the numbers is difficult because, to compare the numbers with each other, the reader needs to store a lot of information in working memory, creating what psychologists refer to as a high 'cognitive load'." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)
"Scatterplots are valuable because, without having to inspect each individual point, we can see overall aggregate patterns in potentially thousands of data points. But does this density of information come at a price - just how easy are they to read? [...] The truth is such charts can shed light on complex stories in a way words alone - or simpler charts you might be more familiar with - cannot." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)
"When integrating written text with charts in a functionally aesthetic way, the reader should be able to find the key takeaways from the chart or dashboard, taking into account the context, constraints, and reading objectives of the overall message. " (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)
"Unlike text, visual communication is governed less by an agreed-upon convention between 'writer' and 'reader' than by how our visual systems react to stimuli, often before we’re aware of it. And just as composers use music theory to create music that produces certain predictable effects on an audience, chart makers can use visual perception theory to make more-effective visualizations with similarly predictable effects." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)