Showing posts with label equilibrium. Show all posts
Showing posts with label equilibrium. Show all posts

24 December 2018

🔭Data Science: Phenomena (Just the Quotes)

"The word ‘chance’ then expresses only our ignorance of the causes of the phenomena that we observe to occur and to succeed one another in no apparent order. Probability is relative in part to this ignorance, and in part to our knowledge.” (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"Theories usually result from the precipitate reasoning of an impatient mind which would like to be rid of phenomena and replace them with images, concepts, indeed often with mere words." (Johann Wolfgang von Goethe, "Maxims and Reflections", 1833)

"[…] in order to observe, our mind has need of some theory or other. If in contemplating phenomena we did not immediately connect them with principles, not only would it be impossible for us to combine these isolated observations, and therefore to derive profit from them, but we should even be entirely incapable of remembering facts, which would for the most remain unnoted by us." (Auguste Comte, "Cours de Philosophie Positive", 1830-1842)

"The dimmed outlines of phenomenal things all merge into one another unless we put on the focusing-glass of theory, and screw it up sometimes to one pitch of definition and sometimes to another, so as to see down into different depths through the great millstone of the world." (James C Maxwell, "Are There Real Analogies in Nature?", 1856) 

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"There is no doubt that graphical expression will soon replace all others whenever one has at hand a movement or change of state - in a word, any phenomenon. Born before science, language is often inappropriate to express exact measures or definite relations." (Étienne-Jules Marey, "La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine", 1878)

"Most surprising and far-reaching analogies revealed themselves between apparently quite disparate natural processes. It seemed that nature had built the most various things on exactly the same pattern; or, in the dry words of the analyst, the same differential equations hold for the most various phenomena." (Ludwig Boltzmann, "On the methods of theoretical physics", 1892)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"A model, like a novel, may resonate with nature, but it is not a ‘real’ thing. Like a novel, a model may be convincing - it may ‘ring true’ if it is consistent with our experience of the natural world. But just as we may wonder how much the characters in a novel are drawn from real life and how much is artifice, we might ask the same of a model: How much is based on observation and measurement of accessible phenomena, how much is convenience? Fundamentally, the reason for modeling is a lack of full access, either in time or space, to the phenomena of interest." (Kenneth Belitz, Science, Vol. 263, 1944)

"The principle of complementarity states that no single model is possible which could provide a precise and rational analysis of the connections between these phenomena [before and after measurement]. In such a case, we are not supposed, for example, to attempt to describe in detail how future phenomena arise out of past phenomena. Instead, we should simply accept without further analysis the fact that future phenomena do in fact somehow manage to be produced, in a way that is, however, necessarily beyond the possibility of a detailed description. The only aim of a mathematical theory is then to predict the statistical relations, if any, connecting the phenomena." (David Bohm, "A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables", 1952)

"The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work" (John Von Neumann, "Method in the Physical Sciences", 1955)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Can there be laws of chance? The answer, it would seem should be negative, since chance is in fact defined as the characteristic of the phenomena which follow no law, phenomena whose causes are too complex to permit prediction." (Félix E Borel, "Probabilities and Life", 1962)

"Theories are usually introduced when previous study of a class of phenomena has revealed a system of uniformities. […] Theories then seek to explain those regularities and, generally, to afford a deeper and more accurate understanding of the phenomena in question. To this end, a theory construes those phenomena as manifestations of entities and processes that lie behind or beneath them, as it were." (Carl G Hempel, "Philosophy of Natural Science", 1966)

"The less we understand a phenomenon, the more variables we require to explain it." (Russell L Ackoff, "Management Science", 1967)

 "As soon as we inquire into the reasons for the phenomena, we enter the domain of theory, which connects the observed phenomena and traces them back to a single ‘pure’ phenomena, thus bringing about a logical arrangement of an enormous amount of observational material." (Georg Joos, "Theoretical Physics", 1968)

"A model is an abstract description of the real world. It is a simple representation of more complex forms, processes and functions of physical phenomena and ideas." (Moshe F Rubinstein & Iris R Firstenberg, "Patterns of Problem Solving", 1975)

"A real change of theory is not a change of equations - it is a change of mathematical structure, and only fragments of competing theories, often not very important ones conceptually, admit comparison with each other within a limited range of phenomena." (Yuri I Manin, "Mathematics and Physics", 1981)

"In all scientific fields, theory is frequently more important than experimental data. Scientists are generally reluctant to accept the existence of a phenomenon when they do not know how to explain it. On the other hand, they will often accept a theory that is especially plausible before there exists any data to support it." (Richard Morris, 1983)

"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985) 

"The science of statistics may be described as exploring, analyzing and summarizing data; designing or choosing appropriate ways of collecting data and extracting information from them; and communicating that information. Statistics also involves constructing and testing models for describing chance phenomena. These models can be used as a basis for making inferences and drawing conclusions and, finally, perhaps for making decisions." (Fergus Daly et al, "Elements of Statistics", 1995)

"[…] the simplest hypothesis proposed as an explanation of phenomena is more likely to be the true one than is any other available hypothesis, that its predictions are more likely to be true than those of any other available hypothesis, and that it is an ultimate a priori epistemic principle that simplicity is evidence for truth." (Richard Swinburne, "Simplicity as Evidence for Truth", 1997)

"The point is that scientific descriptions of phenomena in all of these cases do not fully capture reality they are models. This is not a shortcoming but a strength of science much of the scientist's art lies in figuring out what to include and what to exclude in a model, and this ability allows science to make useful predictions without getting bogged down by intractable details." (Philip Ball," The Self-Made Tapestry: Pattern Formation in Nature", 1998)

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies. " (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)

"A theory is a speculative explanation of a particular phenomenon which derives it legitimacy from conforming to the primary assumptions of the worldview of the culture in which it appears. There can be more than one theory for a particular phenomenon that conforms to a given worldview. […]  A new theory may seem to trigger a change in worldview, as in this case, but logically a change in worldview must precede a change in theory, otherwise the theory will not be viable. A change in worldview will necessitate a change in all theories in all branches of study." (M G Jackson, "Transformative Learning for a New Worldview: Learning to Think Differently", 2008)

"[...] construction of a data model is precisely the selective relevant depiction of the phenomena by the user of the theory required for the possibility of representation of the phenomenon."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Put simply, statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. […] Essentially […], statistics is a scientific approach to analyzing numerical data in order to enable us to maximize our interpretation, understanding and use. This means that statistics helps us turn data into information; that is, data that have been interpreted, understood and are useful to the recipient. Put formally, for your project, statistics is the systematic collection and analysis of numerical data, in order to investigate or discover relationships among phenomena so as to explain, predict and control their occurrence." (Reva B Brown & Mark Saunders, "Dealing with Statistics: What You Need to Know", 2008)

"A theory is a set of deductively closed propositions that explain and predict empirical phenomena, and a model is a theory that is idealized." (Jay Odenbaugh, "True Lies: Realism, Robustness, and Models", Philosophy of Science, Vol. 78, No. 5, 2011)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)

"Repeated observations of the same phenomenon do not always produce the same results, due to random noise or error. Sampling errors result when our observations capture unrepresentative circumstances, like measuring rush hour traffic on weekends as well as during the work week. Measurement errors reflect the limits of precision inherent in any sensing device. The notion of signal to noise ratio captures the degree to which a series of observations reflects a quantity of interest as opposed to data variance. As data scientists, we care about changes in the signal instead of the noise, and such variance often makes this problem surprisingly difficult." (Steven S Skiena, "The Data Science Design Manual", 2017)

"The first epistemic principle to embrace is that there is always a gap between our data and the real world. We fall headfirst into a pitfall when we forget that this gap exists, that our data isn't a perfect reflection of the real-world phenomena it's representing. Do people really fail to remember this? It sounds so basic. How could anyone fall into such an obvious trap?" (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"We live on islands surrounded by seas of data. Some call it 'big data'. In these seas live various species of observable phenomena. Ideas, hypotheses, explanations, and graphics also roam in the seas of data and can clarify the waters or allow unsupported species to die. These creatures thrive on visual explanation and scientific proof. Over time new varieties of graphical species arise, prompted by new problems and inner visions of the fishers in the seas of data." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"Although to penetrate into the intimate mysteries of nature and hence to learn the true causes of phenomena is not allowed to us, nevertheless it can happen that a certain fictive hypothesis may suffice for explaining many phenomena." (Leonhard Euler)

18 December 2014

🕸Systems Engineering: Equilibrium (Just the Quotes)

"We cannot prevent equilibrium from producing its effects. We may brave human laws, but we cannot resist natural ones." (Jules Verne, "Twenty Thousand Leagues Under the Sea", 1870)

"Every situation is an equilibrium of forces; every life is a struggle between opposing forces working within the limits of a certain equilibrium." (Henri-Frédéric Amiel, "Amiel's Journal", 1885)

"Plasticity, then, in the wide sense of the word, means the possession of a structure weak enough to yield to an influence, but strong enough not to yield all at once. Each relatively stable phase of equilibrium in such a structure is marked by what we may call a new set of habits." (William James, "The Laws of Habit", 1887)

"Every change of one of the factors of an equilibrium occasions a rearrangement of the system in such a direction that the factor in question experiences a change in a sense opposite to the original change." (Henri L Le Chatelier, "Recherches Experimentales et Theoriques sur les Equilibres Chimiques" ["Experimental and Theoretical Research on Chemical Equilibria"], Annales des Mines 8, 1888)

"In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry." (Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"We rise from the conception of form to an understanding of the forces which gave rise to it [...] in the representation of form we see a diagram of forces in equilibrium, and in the comparison of kindred forms we discern the magnitude and the direction of the forces which have sufficed to convert the one form into the other." (D'Arcy Wentworth Thompson, "On Growth and Form" Vol. 2, 1917)

"What in the whole denotes a causal equilibrium process, appears for the part as a teleological event." (Ludwig von Bertalanffy, 1929)

"True equilibria can occur only in closed systems and that, in open systems, disequilibria called ‘steady states’, or ‘flow equilibria’ are the predominant and characteristic feature. According to the second law of thermodynamics a closed system must eventually attain a time-independent equilibrium state, with maximum entropy and minimum free energy. An open system may, under certain conditions, attain a time-independent state where the system remains constant as a whole and in its phases, though there is a continuous flow of component materials. This is called a steady state. Steady states are irreversible as a whole. […] A closed system in equilibrium does not need energy for its preservation, nor can energy be obtained from it. In order to perform work, a system must be in disequilibrium, tending toward equilibrium and maintaining a steady state, Therefore the character of an open system is the necessary condition for the continuous working capacity of the organism." (Ludwig on Bertalanffy, "Theoretische Biologie: Band 1: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus", 1932)

"A state of equilibrium in a system does not mean, further, that the system is without tension. Systems can, on the contrary, also come to equilibrium in a state of tension (e.g., a spring under tension or a container with gas under pressure).The occurrence of this sort of system, however, presupposes a certain firmness of boundaries and actual segregation of the system from its environment (both of these in a functional, not a spatial, sense). If the different parts of the system are insufficiently cohesive to withstand the forces working toward displacement (i.e., if the system shows insufficient internal firmness, if it is fluid), or if the system is not segregated from its environment by sufficiently firm walls but is open to its neighboring systems, stationary tensions cannot occur. Instead, there occurs a process in the direction of the forces, which encroaches upon the neighboring regions with diffusion of energy and which goes in the direction of an equilibrium at a lower level of tension in the total region. The presupposition for the existence of a stationary state of tension is thus a certain firmness of the system in question, whether this be its own inner firmness or the firmness of its walls." (Kurt Lewin, "A Dynamic Theory of Personality", 1935)

"The process moves in the direction of a state of equilibrium only for the system as a whole. Part processes may at the same time go on in opposed directions, a circumstance which is of the greatest significance for, for example, the theory of detour behavior. It is hence important to take the system whole which is dominant at the moment as basis." (Kurt Lewin, "A Dynamic Theory of Personality", 1935)

"One may generalize upon these processes in terms of group equilibrium. The group may be said to be in equilibrium when the interactions of its members fall into the customary pattern through which group activities are and have been organized. The pattern of interactions may undergo certain modifications without upsetting the group equilibrium, but abrupt and drastic changes destroy the equilibrium." (William F Whyte, "Street Corner Society", 1943)

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"The study of the conditions for change begins appropriately with an analysis of the conditions for no change, that is, for the state of equilibrium." (Kurt Lewin, "Quasi-Stationary Social Equilibria and the Problem of Permanent Change", 1947)

"Now a system is said to be at equilibrium when it has no further tendency to change its properties." (Walter J Moore, "Physical chemistry", 1950)

"Physical irreversibility manifests itself in the fact that, whenever the system is in a state far removed from equilibrium, it is much more likely to move toward equilibrium, than in the opposite direction." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"Equilibrium requires that the whole of the structure, the form of its elements, and the means of interconnection be so combined that at the supports there will automatically be produced passive forces or reactions that are able to balance the forces acting upon the structures, including the force of its own weight."  (Eduardo Torroja, "Philosophy of Structure", 1951) 

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951) 

"Every stable system has the property that if displaced from a state of equilibrium and released, the subsequent movement is so matched to the initial displacement that the system is brought back to the state of equilibrium. A variety of disturbances will therefore evoke a variety of matched reactions." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"The primary fact is that all isolated state-determined dynamic systems are selective: from whatever state they have initially, they go towards states of equilibrium. These states of equilibrium are always characterised, in their relation to the change-inducing laws of the system, by being exceptionally resistant." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Reversible processes are not, in fact, processes at all, they are sequences of states of equilibrium. The processes which we encounter in real life are always irreversible processes." (Arnold Sommerfeld, "Thermodynamics and Statistical Mechanics", Lectures on Theoretical - Physics Vol. V, 1956)

"The static stability of a system is defined by the initial tendency to return to equilibrium conditions following some disturbance from equilibrium. […] If the object has a tendency to continue in the direction of disturbance, negative static stability or static instability exists. […] If the object subject to disturbance has neither the tendency to return nor the tendency to continue in the displacement direction, neutral static stability exists." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"While static stability is concerned with the tendency of a displaced body to return to equilibrium, dynamic stability is concerned with the resulting motion with time. If an object is disturbed from equilibrium, the time history of the resulting motion indicates the dynamic stability of the system. In general, the system will demonstrate positive dynamic stability if the amplitude of the motion decreases with time." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"[The equilibrium model describes systems] which, in moving to an equilibrium point, typically lose organization, and then tend to hold that minimum level within relatively narrow conditions of disturbance." (Walter F Buckley, "Sociology and modern systems theory", 1967)

"A system is in equilibrium when the forces constituting it are arranged in such a way as to compensate each other, like the two weights pulling at the arms of a pair of scales." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1971) 

"When matter is becoming disturbed by non-equilibrium conditions it organizes itself, it wakes up. It happens that our world is a non-equilibrium system." (Ilya Prigogine, "Thermodynamics of Evolution", 1972) 

"In an isolated system, which cannot exchange energy and matter with the surroundings, this tendency is expressed in terms of a function of the macroscopic state of the system: the entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972) 

"Chance is commonly viewed as a self-correcting process in which a deviation in one direction induces a deviation in the opposite direction to restore the equilibrium. In fact, deviations are not 'corrected' as a chance process unfolds, they are merely diluted." (Amos Tversky, "Judgment Under Uncertainty: Heuristics and Biases", 1974)

"In any system governed by a potential, and in which the system's behavior is determined by no more than four different factors, only seven qualitatively different types of discontinuity are possible. In other words, while there are an infinite number of ways for such a system to change continuously (staying at or near equilibrium), there are only seven structurally stable ways for it to change discontinuously (passing through non-equilibrium states)." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"All environmental areas, from the primeval forest to the large city, can be regarded as ecosystems and investigated accordingly, most of the attention being given to the lasting existence and functioning or 'equilibrium' of these systems." (Wolfgang Haber, Universitas: A Quarterly German Review of the Arts and Sciences Vol.26 (2), 1984)


"If a system is in a state of equilibrium (a steady state), then all sub-systems must be in equilibrium. If all sub-systems are in a state of equilibrium, then the system must be in equilibrium." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain.(Gordon Pask, "Different Kinds of Cybernetics", 1992)

"The model of competitive equilibrium which has been discussed so far is set in a timeless environment. People and companies all operate in a world in which there is no future and hence no uncertainty." (Paul Ormerod, "The Death of Economics", 1994)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"Contrary to what happens at equilibrium, or near equilibrium, systems far from equilibrium do not conform to any minimum principle that is valid for functions of free energy or entropy production." (Ilya Prigogine, "The End of Certainty: Time, Chaos, and the New Laws of Nature", 1996) 

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof Capra, “The web of life: a new scientific understanding of living systems”, 1996)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"An equilibrium is not always an optimum; it might not even be good. This may be the most important discovery of game theory." (Ivar Ekeland, "Le meilleur des mondes possibles" ["The Best of All Possible Worlds"], 2000)

"Positive feedbacks, when unchecked, can produce runaways until the deviation from equilibrium is so large that other effects can be abruptly triggered and lead to ruptures and crashes." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"The players in a game are said to be in strategic equilibrium (or simply equilibrium) when their play is mutually optimal: when the actions and plans of each player are rational in the given strategic environment - i. e., when each knows the actions and plans of the others." (Robert Aumann, "War and Peace", 2005)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat ('dissipation'). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

12 December 2014

🕸Systems Engineering: Nonlinearity (Just the Quotes)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay Wright Forrester, "Urban dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium. " (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"When one combines the new insights gained from studying far-from-equilibrium states and nonlinear processes, along with these complicated feedback systems, a whole new approach is opened that makes it possible to relate the so-called hard sciences to the softer sciences of life - and perhaps even to social processes as well. […] It is these panoramic vistas that are opened to us by Order Out of Chaos." (Ilya Prigogine, "Order Out of Chaos: Man's New Dialogue with Nature", 1984)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: 1. Information processing occurs at many simple elements called neurons. 2. Signals are passed between neurons over connection links. 3. Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. 4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"It remains an unhappy fact that there is no best method for finding the solution to general nonlinear optimization problems. About the best general procedure yet devised is one that relies upon imbedding the original problem within a family of problems, and then developing relations linking one member of the family to another. If this can be done adroitly so that one family member is easily solvable, then these relations can be used to step forward from the solution of the easy problem to that of the original problem. This is the key idea underlying dynamic programming, the most flexible and powerful of all optimization methods." (John L Casti, "Five Golden Rules", 1995)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"Most physical processes in the real world are nonlinear. It is our abstraction of the real world that leads us to the use of linear systems in modeling these processes. These linear systems are simple, understandable, and, in many situations, provide acceptable simulations of the actual processes. Unfortunately, only the simplest of linear processes and only a very small fraction of the nonlinear having verifiable solutions can be modeled with linear systems theory. The bulk of the physical processes that we must address are, unfortunately, too complex to reduce to algorithmic form - linear or nonlinear. Most observable processes have only a small amount of information available with which to develop an algorithmic understanding. The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007) 

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Let's face it, the universe is messy. It is nonlinear, turbulent, and chaotic. It is dynamic. It spends its time in transient behavior on its way to somewhere else, not in mathematically neat equilibria. It self-organizes and evolves. It creates diversity, not uniformity. That's what makes the world interesting, that's what makes it beautiful, and that's what makes it work." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Linearity is a reductionist’s dream, and nonlinearity can sometimes be a reductionist’s nightmare. Understanding the distinction between linearity and nonlinearity is very important and worthwhile." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complexity is a relative term. It depends on the number and the nature of interactions among the variables involved. Open loop systems with linear, independent variables are considered simpler than interdependent variables forming nonlinear closed loops with a delayed response." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Complex systems are full of interdependencies - hard to detect - and nonlinear responses." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity."(Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

11 December 2014

🕸Systems Engineering: Perturbation (Just the Quotes)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Open systems, in contrast to closed systems, exhibit a principle of equifinality, that is, a tendency to achieve a final state independent of initial conditions. In other words, open systems tend to 'resist' perturbations that take them away from some steady state. They can exhibit homeostasis." (Anatol Rapaport, "The Uses of Mathematical Isomorphism in General System Theory", 1972)

"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"This is a general characteristic of self-organizing systems: they are robust or resilient. This means that they are relatively insensitive to perturbations or errors, and have a strong capacity to restore themselves, unlike most human designed systems." (Francis Heylighen, "The Science of Self-Organization and Adaptivity", 2001)

"Feedback and its big brother, control theory, are such important concepts that it is odd that they usually find no formal place in the education of physicists. On the practical side, experimentalists often need to use feedback. Almost any experiment is subject to the vagaries of environmental perturbations. Usually, one wants to vary a parameter of interest while holding all others constant. How to do this properly is the subject of control theory. More fundamentally, feedback is one of the great ideas developed (mostly) in the last century, with particularly deep consequences for biological systems, and all physicists should have some understanding of such a basic concept." (John Bechhoefer, "Feedback for physicists: A tutorial essay on control", Reviews of Modern Physics Vol. 77, 2005)

"Of course, the existence of an unknown butterfly flapping its wings has no direct bearing on weather forecasts, since it will take far too long for such a small perturbation to grow to a significant size, and we have many more immediate uncertainties to worry about. So, the direct impact of this phenomenon on weather prediction is often somewhat overstated." (James Annan & William Connolley, "Chaos and Climate", 2005)

"Physically, the stability of the dynamics is characterized by the sensitivity to initial conditions. This sensitivity can be determined for statistically stationary states, e.g. for the motion on an attractor. If this motion demonstrates sensitive dependence on initial conditions, then it is chaotic. In the popular literature this is often called the 'Butterfly Effect', after the famous 'gedankenexperiment' of Edward Lorenz: if a perturbation of the atmosphere due to a butterfly in Brazil induces a thunderstorm in Texas, then the dynamics of the atmosphere should be considered as an unpredictable and chaotic one. By contrast, stable dependence on initial conditions means that the dynamics is regular." (Ulrike Feudel et al, "Strange Nonchaotic Attractors", 2006)

"This phenomenon, common to chaos theory, is also known as sensitive dependence on initial conditions. Just a small change in the initial conditions can drastically change the long-term behavior of a system. Such a small amount of difference in a measurement might be considered experimental noise, background noise, or an inaccuracy of the equipment." (Greg Rae, Chaos Theory: A Brief Introduction, 2006)

"In that sense, a self-organizing system is intrinsically adaptive: it maintains its basic organization in spite of continuing changes in its environment. As noted, perturbations may even make the system more robust, by helping it to discover a more stable organization." (Francis Heylighen, "Complexity and Self-Organization", 2008)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

05 December 2014

🕸Systems Engineering: Environment (Just the Quotes)

"The change from one stable equilibrium to the other may take place as the result of the isolation of a small unrepresentative group of the population, a temporary change in the environment which alters the relative viability of different types, or in several other ways." (John B S Haldane, "The Causes of Evolution", 1932)

"An isolated system or a system in a uniform environment (which for the present consideration we do best to include as a part of the system we contemplate) increases its entropy and more or less rapidly approaches the inert state of maximum entropy. We now recognize this fundamental law of physics to be just the natural tendency of things to approach the chaotic state (the same tendency that the books of a library or the piles of papers and manuscripts on a writing desk display) unless we obviate it. (The analogue of irregular heat motion, in this case, is our handling those objects now and again without troubling to put them back in their proper places.) (Erwin Schrödinger, "What is Life?", 1944)

"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)

"Every isolated determinate dynamic system, obeying unchanging laws, will ultimately develop some sort of organisms that are adapted to their environments." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"[...] in a state of dynamic equilibrium with their environments. If they do not maintain this equilibrium they die; if they do maintain it they show a degree of spontaneity, variability, and purposiveness of response unknown in the non-living world. This is what is meant by ‘adaptation to environment’ […] [Its] essential feature […] is stability - that is, the ability to withstand disturbances." (Kenneth Craik, 'Living organisms', "The Nature of Psychology", 1966)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"Conventional physics deals only with closed systems, i.e. systems which are considered to be isolated from their environment. [...] However, we find systems which by their very nature and definition are not closed systems. Every living organism is essentially an open system. It maintains itself in a continuous inflow and outflow, a building up and breaking down of components, never being, so long as it is alive, in a state of chemical and thermodynamic equilibrium but maintained in a so-called steady state which is distinct from the latter." (Ludwig von Bertalanffy, "General System Theory", 1968)

"System' is the concept that refers both to a complex of interdependencies between parts, components, and processes, that involves discernible regularities of relationships, and to a similar type of interdependency between such a complex and its surrounding environment." (Talcott Parsons, "Systems Analysis: Social Systems", 1968)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"The main object of cybernetics is to supply adaptive, hierarchical models, involving feedback and the like, to all aspects of our environment. Often such modelling implies simulation of a system where the simulation should achieve the object of copying both the method of achievement and the end result. Synthesis, as opposed to simulation, is concerned with achieving only the end result and is less concerned (or completely unconcerned) with the method by which the end result is achieved. In the case of behaviour, psychology is concerned with simulation, while cybernetics, although also interested in simulation, is primarily concerned with synthesis." (Frank H George, "Soviet Cybernetics, the militairy and Professor Lerner", New Scientist, 1973)

"For any system the environment is always more complex than the system itself. No system can maintain itself by means of a point-for-point correlation with its environment, i.e., can summon enough 'requisite variety' to match its environment. So each one has to reduce environmental complexity - primarily by restricting the environment itself and perceiving it in a categorically preformed way. On the other hand, the difference of system and environment is a prerequisite for the reduction of complexity because reduction can be performed only within the system, both for the system itself and its environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"General systems theory and cybernetics supplanted the classical conceptual model of a whole made out of parts and relations between parts with a model emphasizing the difference between systems and environments. This new paradigm made it possible to relate both the structures (including forms of differentiation) and processes of systems to the environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"In a closed system, the change in entropy must always be 'positive', meaning toward death. However, in open biological or social systems, entropy can be arrested and may even be transformed into negative entropy - a process of more complete organization and enhanced ability to transform resources. Why? Because the system imports energy and resources from its environment, leading to renewal. This is why education and learning are so important, as they provide new and stimulating input (termed neg-entropy) that can transform each of us." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"Neural networks conserve the complexity of the systems they model because they have complex structures themselves. Neural networks encode information about their environment in a distributed form. […] Neural networks have the capacity to self-organise their internal structure." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"All systems have a tendency toward maximum entropy, disorder, and death. Importing resources from the environment is key to long-term viability; closed systems move toward this disorganization faster than open systems." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems thinking practices the exact opposite of this analytic approach. Systems thinking studies the organization as a whole in its interaction with its environment. Then, it works backwards to understand how each part of that whole works in relation to, and support of, the entire system’s objectives. Only then can the core strategies be formulated." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems, and organizations as systems, can only be understood holistically. Try to understand the system and its environment first. Organizations are open systems and, as such, are viable only in interaction with and adaptation to the changing environment." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Entropy [...] is the amount of disorder or randomness present in any system. All non-living systems tend toward disorder; left alone they will eventually lose all motion and degenerate into an inert mass. When this permanent stage is reached and no events occur, maximum entropy is attained. A living system can, for a finite time, avert this unalterable process by importing energy from its environment. It is then said to create negentropy, something which is characteristic of all kinds of life." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"Feedback and its big brother, control theory, are such important concepts that it is odd that they usually find no formal place in the education of physicists. On the practical side, experimentalists often need to use feedback. Almost any experiment is subject to the vagaries of environmental perturbations. Usually, one wants to vary a parameter of interest while holding all others constant. How to do this properly is the subject of control theory. More fundamentally, feedback is one of the great ideas developed (mostly) in the last century, with particularly deep consequences for biological systems, and all physicists should have some understanding of such a basic concept." (John Bechhoefer, "Feedback for physicists: A tutorial essay on control", Reviews of Modern Physics Vol. 77, 2005)

"The single most important property of a cybernetic system is that it is controlled by the relationship between endogenous goals and the external environment. [...] In a complex system, overarching goals may be maintained (or attained) by means of an array of hierarchically organized subgoals that may be pursued contemporaneously, cyclically, or seriatim." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005)

"When defining living systems, the term dynamic equilibrium is essential. It does not imply something which is steady or stable. On the contrary, it is a floating state characterized by invisible movements and preparedness for change. To be in dynamic equilibrium is adapting adjustment to balance. Homeostasis stands for the sum of all control functions creating the state of dynamic equilibrium in a healthy organism. It is the ability of the body to maintain a narrow range of internal conditions in spite of environmental changes." (Lars Skyttner, "General Systems Theory: Problems, Perspective, Practice", 2005)

"Systematic usage of the methods of modern control theory to study physical systems is a key feature of a new research area in physics that may be called cybernetical physics. The subject of cybernetical physics is focused on studying physical systems by means of feedback interactions with the environment. Its methodology heavily relies on the design methods developed in cybernetics. However, the approach of cybernetical physics differs from the conventional use of feedback in control applications (e.g., robotics, mechatronics) aimed mainly at driving a system to a prespecified position or a given trajectory." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"In physical, exponentially growing systems, there must be at least one reinforcing loop driving growth and at least one balancing feedback loop constraining growth, because no system can grow forever in a finite environment." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"In that sense, a self-organizing system is intrinsically adaptive: it maintains its basic organization in spite of continuing changes in its environment. As noted, perturbations may even make the system more robust, by helping it to discover a more stable organization." (Francis Heylighen, "Complexity and Self-Organization", 2008)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

More quotes on "Environment" at the-web-of-knowledge.blogspot.com.

04 December 2014

🕸Systems Engineering: Optimization (Just the Quotes)

"The Systems Engineering method recognizes each system is an integrated whole even though composed of devices, specialized structures and sub-functions. It is further recognized that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system function according to the weighted objectives and to achieve maximum capability of its parts." (Jack A Morton, "Integrating of Systems Engineering with Component Development", Electrical Manufacturing, 1959)

"The process of formulating and structuring a system are important and creative, since they provide and organize the information, which each system. 'establishes the number of objectives and the balance between them which will be optimized'. Furthermore, they help identify and define the system parts. Furthermore, they help identify and define the system parts which make up its 'diverse, specialized structures and subfunctions'." (Harold Chestnut, "Systems Engineering Tools", 1965)

"The Systems engineering method recognizes each system is an integrated whole even though composed of diverse, specialized structures and sub-functions. It further recognizes that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system functions according to the weighted objectives and to achieve maximum compatibility of its parts." (Harold Chestnut, "Systems Engineering Tools", 1965)

"Game theory is a collection of mathematical models designed to study situations involving conflict and/or cooperation. It allows for a multiplicity of decision makers who may have different preferences and objectives. Such models involve a variety of different solution concepts concerned with strategic optimization, stability, bargaining, compromise, equity and coalition formation." (Notices of the American Mathematical Society Vol. 26 (1), 1979) 

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992) 

"Mathematical programming (or optimization theory) is that branch of mathematics dealing with techniques for maximizing or minimizing an objective function subject to linear, nonlinear, and integer constraints on the variables."  (George B Dantzig & Mukund N Thapa, "Linear Programming" Vol I, 1997)

"The whole idea of a system is to optimize - not maximize - the fit of its elements in order to maximize the whole. If we merely maximize the elements of systems, we end up suboptimizing the whole [...]" (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"Optimization by individual agents, often used to derive competitive equilibria, are unnecessary for an actual economy to approximately attain such equilibria. From the failure of humans to optimize in complex tasks, one need not conclude that the equilibria derived from the competitive model are descriptively irrelevant. We show that even in complex economic systems, such equilibria can be attained under a range of surprisingly weak assumptions about agent behavior." (Antoni Bosch-Domènech & Shyam Sunder, "Tracking the Invisible Hand", 2000)

"The players in a game are said to be in strategic equilibrium (or simply equilibrium) when their play is mutually optimal: when the actions and plans of each player are rational in the given strategic environment - i. e., when each knows the actions and plans of the others." (Robert Aumann, "War and Peace", 2005)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007)

"Optimization is more than finding the best simulation results. It is itself a complex and evolving field that, subject to certain information constraints, allows data scientists, statisticians, engineers, and traders alike to perform reality checks on modeling results." (Chris Conlan, "Automated Trading with R: Quantitative Research and Platform Development", 2016)

"It is the field of artificial intelligence in which the population is in the form of agents which search in a parallel fashion with multiple initialization points. The swarm intelligence-based algorithms mimic the physical and natural processes for mathematical modeling of the optimization algorithm. They have the properties of information interchange and non-centralized control structure." (Sajad A Rather & P Shanthi Bala, "Analysis of Gravitation-Based Optimization Algorithms for Clustering and Classification", 2020)

More quotes on "Optimization" at the-web-of-knowledge.blogspot.com.

16 August 2014

🌡️Performance Management: Resilience (Definitions)

"The capacity of individuals and the holding environment to contain disequilibrium over time." (Alexander Grashow et al, "The Practice of Adaptive Leadership", 2009)

"Ability to recover easily or to adapt to change and adversity." (Maria de Ludres Cró, "Resilience and Psychomotricity in Preschool Education", 2013)

"The ability to withstand stressful and adverse circumstances in one’s life as if one has some internal protective mechanism." (Constantine Ngara, "Educating Highly Able Students from an African Perspective", 2017)

"A capability to anticipate, prepare for, respond to, and recover from significant multi-hazard threats with minimum damage to social well-being, the economy, and the environment." (Carolyn N Stevenson, "Addressing the Sustainable Development Goals Through Environmental Education", 2019)

"It is the attitude of adapting quickly to different situations in order to achieve the goal in the best way." (Marco A C Paschoalotto et al, "The Role of the Entrepreneur in the Promotion of the Digital Economy", 2019)

"the act of resolving conflicts, turning disruptive changes into new directions, learning from this process, and becoming more successful and satisfied in the process." (Amina Omrane, "Which Are the Appropriate Skills Needed for the Entrepreneurial Success of Startups in the Era of Digitalization?", 2020)

"The ability of human or natural systems to cope with adverse events and be able to effect a quick recovery." (Maria F Casado-Claro, "Fostering Resilience by Empowering Entrepreneurs and Small Businesses in Local Communities in Post-Disaster Scenarios", 2021)

"The word resilience refers to the ability to overcome critical moments and adapt after experiencing some unusual and unexpected situation. It also indicates return to normal." (José G Vargas-Hernández, "Urban Socio-Ecosystems Green Resilience", 2021)

22 February 2014

🕸Systems Engineering: Resilience (Definitions)

"The ability of a system, community, or society exposed to hazards to resist, absorb, accommodate to and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions." (ISDR, 2009)

"The quality of being able to absorb systemic 'shocks' without being destroyed even if recovery produces an altered state to that of the status quo ante." (Philip Cooke, "Regional Innovation Systems in Centralised States: Challenges, Chances, and Crossovers", 2015)

"A swarm is resilient if the loss of individual agents has little impact on the success of the task of the swarm." (Thalia M Laing et al, "Security in Swarm Robotics", 2016)

"Resilience is the capacity of organism or system to withstand stress and catastrophe." (Sunil L Londhe, "Climate Change and Agriculture: Impacts, Adoption, and Mitigation", 2016)

"System resilience is an ability of the system to withstand a major disruption within acceptable degradation parameters and to recover within an acceptable time." (Denis Čaleta, "Cyber Threats to Critical Infrastructure Protection: Public Private Aspects of Resilience", 2016) 

"The capacity for self-organization, and to adapt to impact factors." (Ahmed Karmaoui, Environmental Vulnerability to Climate Change in Mediterranean Basin: Socio-Ecological Interactions between North and South, 2016)

"The capacity of ecosystem to absorb disturbance, reorganize and return to an equilibrium or steady-state while undergoing some change or perturbation so that still retain essentially the same function, structure, identity, and feedbacks." (Susmita Lahiri et al, "Role of Microbes in Eco-Remediation of Perturbed Aquatic Ecosystem", 2017)

"A capability to anticipate, prepare for, respond to, and recover from significant multi-hazard threats with minimum damage to social well-being, the economy, and the environment." (Carolyn N Stevenson, "Addressing the Sustainable Development Goals Through Environmental Education", 2019)

"The conventional understanding of resilience applied to socioeconomic studies regards the bouncing-back ability of a socioeconomic system to recover from a shock or disruption. Today resilience is being influenced by an evolutionary perspective, underlining it as the bouncing-forward ability of the system to undergo anticipatory or reactionary reorganization to minimize the impact of destabilizing shocks and create new growth trajectories." (Hugo Pinto & André Guerreiro, "Resilience, Innovation, and Knowledge Transfer: Conceptual Considerations and Future Research Directions", 2019)

"Is the system capacity to rebalance after a perturbation." (Ahmed Karmaoui et al, "Composite Indicators as Decision Support Method for Flood Analysis: Flood Vulnerability Index Category", 2020)

"The ability of human or natural systems to cope with adverse events and be able to effect a quick recovery." (Maria F Casado-Claro, "Fostering Resilience by Empowering Entrepreneurs and Small Businesses in Local Communities in Post-Disaster Scenarios", 2021)

"The word resilience refers to the ability to overcome critical moments and adapt after experiencing some unusual and unexpected situation. It also indicates return to normal." (José G Vargas-Hernández, "Urban Socio-Ecosystems Green Resilience", 2021)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.