04 December 2014

Systems Engineering: Optimization (Just the Quotes)

"The Systems Engineering method recognizes each system is an integrated whole even though composed of devices, specialized structures and sub-functions. It is further recognized that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system function according to the weighted objectives and to achieve maximum capability of its parts." (Jack A Morton, "Integrating of Systems Engineering with Component Development", Electrical Manufacturing, 1959)

"The process of formulating and structuring a system are important and creative, since they provide and organize the information, which each system. 'establishes the number of objectives and the balance between them which will be optimized'. Furthermore, they help identify and define the system parts. Furthermore, they help identify and define the system parts which make up its 'diverse, specialized structures and subfunctions'." (Harold Chestnut, "Systems Engineering Tools", 1965)

"The Systems engineering method recognizes each system is an integrated whole even though composed of diverse, specialized structures and sub-functions. It further recognizes that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system functions according to the weighted objectives and to achieve maximum compatibility of its parts." (Harold Chestnut, "Systems Engineering Tools", 1965)

"Game theory is a collection of mathematical models designed to study situations involving conflict and/or cooperation. It allows for a multiplicity of decision makers who may have different preferences and objectives. Such models involve a variety of different solution concepts concerned with strategic optimization, stability, bargaining, compromise, equity and coalition formation." (Notices of the American Mathematical Society Vol. 26 (1), 1979) 

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992) 

"Mathematical programming (or optimization theory) is that branch of mathematics dealing with techniques for maximizing or minimizing an objective function subject to linear, nonlinear, and integer constraints on the variables."  (George B Dantzig & Mukund N Thapa, "Linear Programming" Vol I, 1997)

"The whole idea of a system is to optimize - not maximize - the fit of its elements in order to maximize the whole. If we merely maximize the elements of systems, we end up suboptimizing the whole [...]" (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"Optimization by individual agents, often used to derive competitive equilibria, are unnecessary for an actual economy to approximately attain such equilibria. From the failure of humans to optimize in complex tasks, one need not conclude that the equilibria derived from the competitive model are descriptively irrelevant. We show that even in complex economic systems, such equilibria can be attained under a range of surprisingly weak assumptions about agent behavior." (Antoni Bosch-Domènech & Shyam Sunder, "Tracking the Invisible Hand", 2000)

"The players in a game are said to be in strategic equilibrium (or simply equilibrium) when their play is mutually optimal: when the actions and plans of each player are rational in the given strategic environment - i. e., when each knows the actions and plans of the others." (Robert Aumann, "War and Peace", 2005)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007)

"Optimization is more than finding the best simulation results. It is itself a complex and evolving field that, subject to certain information constraints, allows data scientists, statisticians, engineers, and traders alike to perform reality checks on modeling results." (Chris Conlan, "Automated Trading with R: Quantitative Research and Platform Development", 2016)

"It is the field of artificial intelligence in which the population is in the form of agents which search in a parallel fashion with multiple initialization points. The swarm intelligence-based algorithms mimic the physical and natural processes for mathematical modeling of the optimization algorithm. They have the properties of information interchange and non-centralized control structure." (Sajad A Rather & P Shanthi Bala, "Analysis of Gravitation-Based Optimization Algorithms for Clustering and Classification", 2020)

More quotes on "Optimization" at the-web-of-knowledge.blogspot.com.

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.