01 December 2014

🕸Systems Engineering: Randomness (Just the Quotes)

"How can deterministic behavior look random? If truly identical states do occur on two or more occasions, it is unlikely that the identical states that will necessarily follow will be perceived as being appreciably different. What can readily happen instead is that almost, but not quite, identical states occurring on two occasions will appear to be just alike, while the states that follow, which need not be even nearly alike, will be observably different. In fact, in some dynamical systems it is normal for two almost identical states to be followed, after a sufficient time lapse, by two states bearing no more resemblance than two states chosen at random from a long sequence. Systems in which this is the case are said to be sensitively dependent on initial conditions. With a few more qualifications, to be considered presently, sensitive dependence can serve as an acceptable definition of chaos [...]" (Edward N Lorenz, "The Essence of Chaos", 1993)

"Systems that vary deterministically as time progresses, such as mathematical models of the swinging pendulum, the rolling rock, and the breaking wave, and also systems that vary with an inconsequential amount of randomness - possibly a real pendulum, rock, or wave - are technically known as dynamical systems." (Edward N Lorenz, "The Essence of Chaos", 1993)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"When some systems are stuck in a dangerous impasse, randomness and only randomness can unlock them and set them free." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

More quotes on "Randomness" at the-web-of-knowledge.blogspot.com

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.