"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)
"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)
"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)
"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)
"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)
"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)
"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)
"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)
"Nature's tendency for iteration, pattern formation, and creation of order out of chaos creates expectations of predictability. It seems, however, that nature, because of varying degrees of interaction between chance and choice, and the nonlinearity of systems, escapes the boredom of predictability." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)
"Complex systems seem to have this property, with large periods of apparent stasis marked by sudden and catastrophic failures. These processes may not literally be random, but they are so irreducibly complex (right down to the last grain of sand) that it just won’t be possible to predict them beyond a certain level. […] And yet complex processes produce order and beauty when you zoom out and look at them from enough distance."
"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)
"There is no linear additive process that, if all the parts are taken together, can be understood to create the total system that occurs at the moment of self-organization; it is not a quantity that comes into being. It is not predictable in its shape or subsequent behavior or its subsequent qualities. There is a nonlinear quality that comes into being at the moment of synchronicity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)
"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)
"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." (G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)
"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)
More quotes on "Prediction" at the-web-of-knowledge.blogspot.com.
No comments:
Post a Comment