"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." (William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)
"We know not to what are due the accidental errors, and precisely because we do not know, we are aware they obey the law of Gauss. Such is the paradox." (Henri Poincaré, "The Foundations of Science", 1913)
"The problems which arise in the reduction of data may thus conveniently be divided into three types: (i) Problems of Specification, which arise in the choice of the mathematical form of the population. (ii) When a specification has been obtained, problems of Estimation arise. These involve the choice among the methods of calculating, from our sample, statistics fit to estimate the unknow n parameters of the population. (iii) Problems of Distribution include the mathematical deduction of the exact nature of the distributions in random samples of our estimates of the parameters, and of other statistics designed to test the validity of our specification (tests of Goodness of Fit)." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"An inference, if it is to have scientific value, must constitute a prediction concerning future data. If the inference is to be made purely with the help of the distribution theory of statistics, the experiments that constitute evidence for the inference must arise from a state of statistical control; until that state is reached, there is no universe, normal or otherwise, and the statistician’s calculations by themselves are an illusion if not a delusion. The fact is that when distribution theory is not applicable for lack of control, any inference, statistical or otherwise, is little better than a conjecture. The state of statistical control is therefore the goal of all experimentation. (William E Deming, "Statistical Method from the Viewpoint of Quality Control", 1939)
"Normality is a myth; there never was, and never will be, a normal distribution. This is an overstatement from the practical point of view, but it represents a safer initial mental attitude than any in fashion during the past two decades." (Roy C Geary, "Testing for Normality", Biometrika Vol. 34, 1947)
"A good estimator will be unbiased and will converge more and more closely (in the long run) on the true value as the sample size increases. Such estimators are known as consistent. But consistency is not all we can ask of an estimator. In estimating the central tendency of a distribution, we are not confined to using the arithmetic mean; we might just as well use the median. Given a choice of possible estimators, all consistent in the sense just defined, we can see whether there is anything which recommends the choice of one rather than another. The thing which at once suggests itself is the sampling variance of the different estimators, since an estimator with a small sampling variance will be less likely to differ from the true value by a large amount than an estimator whose sampling variance is large." (Michael J Moroney, "Facts from Figures", 1951)
"Some distributions [...] are symmetrical about their central value. Other distributions have marked asymmetry and are said to be skew. Skew distributions are divided into two types. If the 'tail' of the distribution reaches out into the larger values of the variate, the distribution is said to show positive skewness; if the tail extends towards the smaller values of the variate, the distribution is called negatively skew." (Michael J Moroney, "Facts from Figures", 1951)
"[A] sequence is random if it has every property that is shared by all infinite sequences of independent samples of random variables from the uniform distribution." (Joel N Franklin, 1962)
"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (William E Deming, "On Probability as Basis for Action" American Statistician Vol. 29 (4), 1975)
"When the statistician looks at the outside world, he cannot, for example, rely on finding errors that are independently and identically distributed in approximately normal distributions. In particular, most economic and business data are collected serially and can be expected, therefore, to be heavily serially dependent. So is much of the data collected from the automatic instruments which are becoming so common in laboratories these days. Analysis of such data, using procedures such as standard regression analysis which assume independence, can lead to gross error. Furthermore, the possibility of contamination of the error distribution by outliers is always present and has recently received much attention. More generally, real data sets, especially if they are long, usually show inhomogeneity in the mean, the variance, or both, and it is not always possible to randomize." (George E P Box, "Some Problems of Statistics and Everyday Life", Journal of the American Statistical Association, Vol. 74 (365), 1979)
"At the heart of probabilistic statistical analysis is the assumption that a set of data arises as a sample from a distribution in some class of probability distributions. The reasons for making distributional assumptions about data are several. First, if we can describe a set of data as a sample from a certain theoretical distribution, say a normal distribution (also called a Gaussian distribution), then we can achieve a valuable compactness of description for the data. For example, in the normal case, the data can be succinctly described by giving the mean and standard deviation and stating that the empirical (sample) distribution of the data is well approximated by the normal distribution. A second reason for distributional assumptions is that they can lead to useful statistical procedures. For example, the assumption that data are generated by normal probability distributions leads to the analysis of variance and least squares. Similarly, much of the theory and technology of reliability assumes samples from the exponential, Weibull, or gamma distribution. A third reason is that the assumptions allow us to characterize the sampling distribution of statistics computed during the analysis and thereby make inferences and probabilistic statements about unknown aspects of the underlying distribution. For example, assuming the data are a sample from a normal distribution allows us to use the t-distribution to form confidence intervals for the mean of the theoretical distribution. A fourth reason for distributional assumptions is that understanding the distribution of a set of data can sometimes shed light on the physical mechanisms involved in generating the data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"Equal variability is not always achieved in plots. For instance, if the theoretical distribution for a probability plot has a density that drops off gradually to zero in the tails (as the normal density does), then the variability of the data in the tails of the probability plot is greater than in the center. Another example is provided by the histogram. Since the height of any one bar has a binomial distribution, the standard deviation of the height is approximately proportional to the square root of the expected height; hence, the variability of the longer bars is greater." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"Symmetry is also important because it can simplify our thinking about the distribution of a set of data. If we can establish that the data are (approximately) symmetric, then we no longer need to describe the shapes of both the right and left halves. (We might even combine the information from the two sides and have effectively twice as much data for viewing the distributional shape.) Finally, symmetry is important because many statistical procedures are designed for, and work best on, symmetric data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"We will use the convenient expression 'chosen at random' to mean that the probabilities of the events in the sample space are all the same unless some modifying words are near to the words 'at random'. Usually we will compute the probability of the outcome based on the uniform probability model since that is very common in modeling simple situations. However, a uniform distribution does not imply that it comes from a random source; […]" (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)
"Data that are skewed toward large values occur commonly. Any set of positive measurements is a candidate. Nature just works like that. In fact, if data consisting of positive numbers range over several powers of ten, it is almost a guarantee that they will be skewed. Skewness creates many problems. There are visualization problems. A large fraction of the data are squashed into small regions of graphs, and visual assessment of the data degrades. There are characterization problems. Skewed distributions tend to be more complicated than symmetric ones; for example, there is no unique notion of location and the median and mean measure different aspects of the distribution. There are problems in carrying out probabilistic methods. The distribution of skewed data is not well approximated by the normal, so the many probabilistic methods based on an assumption of a normal distribution cannot be applied." (William S Cleveland, "Visualizing Data", 1993)
"Fitting data means finding mathematical descriptions of structure in the data. An additive shift is a structural property of univariate data in which distributions differ only in location and not in spread or shape. […] The process of identifying a structure in data and then fitting the structure to produce residuals that have the same distribution lies at the heart of statistical analysis. Such homogeneous residuals can be pooled, which increases the power of the description of the variation in the data." (William S Cleveland, "Visualizing Data", 1993)
"Many good things happen when data distributions are well approximated by the normal. First, the question of whether the shifts among the distributions are additive becomes the question of whether the distributions have the same standard deviation; if so, the shifts are additive. […] A second good happening is that methods of fitting and methods of probabilistic inference, to be taken up shortly, are typically simple and on well understood ground. […] A third good thing is that the description of the data distribution is more parsimonious." (William S Cleveland, "Visualizing Data", 1993)
"Probabilistic inference is the classical paradigm for data analysis in science and technology. It rests on a foundation of randomness; variation in data is ascribed to a random process in which nature generates data according to a probability distribution. This leads to a codification of uncertainly by confidence intervals and hypothesis tests." (William S Cleveland, "Visualizing Data", 1993)
"When distributions are compared, the goal is to understand how the distributions shift in going from one data set to the next. […] The most effective way to investigate the shifts of distributions is to compare corresponding quantiles." (William S Cleveland, "Visualizing Data", 1993)
"When the distributions of two or more groups of univariate data are skewed, it is common to have the spread increase monotonically with location. This behavior is monotone spread. Strictly speaking, monotone spread includes the case where the spread decreases monotonically with location, but such a decrease is much less common for raw data. Monotone spread, as with skewness, adds to the difficulty of data analysis. For example, it means that we cannot fit just location estimates to produce homogeneous residuals; we must fit spread estimates as well. Furthermore, the distributions cannot be compared by a number of standard methods of probabilistic inference that are based on an assumption of equal spreads; the standard t-test is one example. Fortunately, remedies for skewness can cure monotone spread as well." (William S Cleveland, "Visualizing Data", 1993)
"A normal distribution is most unlikely, although not impossible, when the observations are dependent upon one another - that is, when the probability of one event is determined by a preceding event. The observations will fail to distribute themselves symmetrically around the mean." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)
"Linear regression assumes that in the population a normal distribution of error values around the predicted Y is associated with each X value, and that the dispersion of the error values for each X value is the same. The assumptions imply normal and similarly dispersed error distributions." (Fred C Pampel, "Linear Regression: A primer", 2000)
"The principle of maximum entropy is employed for estimating unknown probabilities (which cannot be derived deductively) on the basis of the available information. According to this principle, the estimated probability distribution should be such that its entropy reaches maximum within the constraints of the situation, i.e., constraints that represent the available information. This principle thus guarantees that no more information is used in estimating the probabilities than available." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)
"The principle of minimum entropy is employed in the formulation of resolution forms and related problems. According to this principle, the entropy of the estimated probability distribution, conditioned by a particular classification of the given events (e.g., states of the variable involved), is minimum subject to the constraints of the situation. This principle thus guarantees that all available information is used, as much as possible within the given constraints (e.g., required number of states), in the estimation of the unknown probabilities." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)
"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S. Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)
"The central limit theorem says that, under conditions almost
always satisfied in the real world of experimentation, the distribution of such
a linear function of errors will tend to normality as the number of its components
becomes large. The tendency to normality occurs almost regardless of the
individual distributions of the component errors. An important proviso is that several
sources of error must make important contributions to the overall error and
that no particular source of error dominate the rest." (George E P Box et al, "Statistics for Experimenters: Design, discovery, and innovation" 2nd Ed., 2005)
"Two things explain the importance of the normal distribution: (1) The central limit effect that produces a tendency for real error distributions to be 'normal like'. (2) The robustness to nonnormality of some common statistical procedures, where 'robustness' means insensitivity to deviations from theoretical normality." (George E P Box et al, "Statistics for Experimenters: Design, discovery, and innovation" 2nd Ed., 2005)
"For some scientific data the true value cannot be given by a constant or some straightforward mathematical function but by a probability distribution or an expectation value. Such data are called probabilistic. Even so, their true value does not change with time or place, making them distinctly different from most statistical data of everyday life." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)
"In error analysis the so-called 'chi-squared' is a measure of the agreement between the uncorrelated internal and the external uncertainties of a measured functional relation. The simplest such relation would be time independence. Theory of the chi-squared requires that the uncertainties be normally distributed. Nevertheless, it was found that the test can be applied to most probability distributions encountered in practice." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)
"To fulfill the requirements of the theory underlying uncertainties, variables with random uncertainties must be independent of each other and identically distributed. In the limiting case of an infinite number of such variables, these are called normally distributed. However, one usually speaks of normally distributed variables even if their number is finite." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)
"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon." (Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)
"The elements of this cloud of uncertainty (the set of all
possible errors) can be described in terms of probability. The center of the cloud
is the number zero, and elements of the cloud that are close to zero are more
probable than elements that are far away from that center. We can be more
precise in this definition by defining the cloud of uncertainty in terms of a
mathematical function, called the probability distribution." (David S Salsburg, "Errors,
Blunders, and Lies: How to Tell the Difference", 2017)
"It is not enough to give a single summary for a distribution - we need to have an idea of the spread, sometimes known as the variability. [...] The range is a natural choice, but is clearly very sensitive to extreme values [...] In contrast the inter-quartile range (IQR) is unaffected by extremes. This is the distance between the 25th and 75th percentiles of the data and so contains the ‘central half’ of the numbers [...] Finally the standard deviation is a widely used measure of spread. It is the most technically complex measure, but is only really appropriate for well-behaved symmetric data since it is also unduly influenced by outlying values." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)
"[...] the Central Limit Theorem [...] says that the distribution of sample means tends towards the form of a normal distribution with increasing sample size, almost regardless of the shape of the original data distribution." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)
"There is no ‘correct’ way to display sets of numbers: each of the plots we have used has some advantages: strip-charts show individual points, box-and-whisker plots are convenient for rapid visual summaries, and histograms give a good feel for the underlying shape of the data distribution." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)
More quotes on "Distributions" at the-web-of-knowledge.blogspot.com.