Showing posts with label testing. Show all posts
Showing posts with label testing. Show all posts

17 January 2025

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part VIII: Permissions) [new feature]

Data-based solutions usually target a set of users who (ideally) have restricted permissions to the functionality. Therefore, as part of the process are defined several personas that target different use cases, for which the permissions must be restricted accordingly. 

In the simplest scenario the user must have access to the underlying objects for querying the data. Supposing that an Entra User was created already, the respective user must be given access also in the Fabric database (see [1], [2]). From database's main menu follow the path to assign read permissions:
Security >> Manage SQL Security >> (select role: db_datareader)

Manage SQL Security
Manage SQL Security

Manage access >> Add >> (search for User)

Manage access
Manage access

(select user) >> Share database >> (select additional permissions) >> Save

Manage additional permissions
Manage additional permissions

The easiest way to test whether the permissions work before building the functionality is to login over SQL Server Management Studio (SSMS) and check the access using the Microsoft Entra MFA. Ideally, one should have a User's credentials that can be used only for testing purposes. After the above setup was done, the new User was able to access the data. 

A second User can be created for testing with the maximum of permissions allowed on the SQL database side, which is useful for troubleshooting. Alternatively, one can use only one User for testing and assign or remove the permissions as needed by the test scenario. 

It's a good idea to try to understand what's happening in the background. For example, the expectation was that for the Entra User created above also a SQL user is created, which doesn't seem to be the case, at least per current functionality available. 

 Before diving deeper, it's useful to retrieve User's details: 

-- retrieve current user
SELECT SUser_Name() sys_user_name
, User_Id() user_id 
, USER_NAME() user_name
, current_user [current_user]
, user [user]; 
Output:
sys_user_name user_id user_name current_user user
JamesClavell@[domain].onmicrosoft.com 0 JamesClavell@[domain].onmicrosoft.com JamesClavell@[domain].onmicrosoft.com JamesClavell@[domain].onmicrosoft.com

Retrieving the current User is useful especially when testing in parallel functionality with different Users. Strangely, User's ID is 0 when only read permissions were assigned. However, a valid User identifier is added for example when to the User is assigned also the db_datawriter role. Removing afterwards the db_datawriter role to the User keeps as expected User's ID. For troubleshooting purposes, at least per current functionality, it might be a good idea to create the Users with a valid User ID (e.g. by assigning temporarily the db_datawriter role to the User). 

The next step is to look at the Users with access to the database:

-- database access 
SELECT USR.uid
, USR.name
--, USR.sid 
, USR.hasdbaccess 
, USR.islogin
, USR.issqluser
--, USR.createdate 
--, USR.updatedate 
FROM sys.sysusers USR
WHERE USR.hasdbaccess = 1
  AND USR.islogin = 1
ORDER BY uid
Output:
uid name hasdbaccess islogin issqluser
1 dbo 1 1 1
6 CharlesDickens@[...].onmicrosoft.com 1 1 0
7 TestUser 1 1 1
9 JamesClavell@[...].onmicrosoft.com 1 1 0

For testing purposes, besides the standard dbo role and two Entra-based roles, it was created also a SQL role to which was granted access to the SalesLT schema (see initial post):

-- create the user
CREATE USER TestUser WITHOUT LOGIN;

-- assign access to SalesLT schema 
GRANT SELECT ON SCHEMA::SalesLT TO TestUser;
  
-- test impersonation (run together)
EXECUTE AS USER = 'TestUser';

SELECT * FROM SalesLT.Customer;

REVERT; 

Notes:
1) Strangely, even if access was given explicitly only to the SalesLT schema, the TestUser User has access also to sys.sysusers and other DMVs. That's valid also for the access over SSMS
2) For the above created User there are no records in the sys.user_token and sys.login_token DMVs, in contrast with the user(s) created for administering the SQL database. 

Let's look at the permissions granted explicitly:

-- permissions granted explicitly
SELECT DPR.principal_id
, DPR.name
, DPR.type_desc
, DPR.authentication_type_desc
, DPE.state_desc
, DPE.permission_name
FROM sys.database_principals DPR
     JOIN sys.database_permissions DPE
	   ON DPR.principal_id = DPE.grantee_principal_id
WHERE DPR.principal_id != 0 -- removing the public user
ORDER BY DPR.principal_id
, DPE.permission_name;
Result:
principal_id name type_desc authentication_type_desc state_desc permission_name
1 dbo SQL_USER INSTANCE GRANT CONNECT
6 CharlesDickens@[...].onmicrosoft.com EXTERNAL_USER EXTERNAL GRANT AUTHENTICATE
6 CharlesDickens@[...].onmicrosoft.com EXTERNAL_USER EXTERNAL GRANT CONNECT
7 TestUser SQL_USER NONE GRANT CONNECT
7 TestUser SQL_USER NONE GRANT SELECT
9 JamesClavell@[...].onmicrosoft.com EXTERNAL_USER EXTERNAL GRANT CONNECT

During troubleshooting it might be useful to check current user's permissions at the various levels via sys.fn_my_permissions:

-- retrieve database-scoped permissions for current user
SELECT *
FROM sys.fn_my_permissions(NULL, 'Database');

-- retrieve schema-scoped permissions for current user
SELECT *
FROM sys.fn_my_permissions('SalesLT', 'Schema');

-- retrieve object-scoped permissions for current user
SELECT *
FROM sys.fn_my_permissions('SalesLT.Customer', 'Object')
WHERE permission_name = 'SELECT';

Notes:
1) See also [1] and [4] in what concerns the limitations that apply to managing permissions in SQL databases.

Happy coding!

Previous Post <<||>> Previous Post

References:
[1] Microsoft Learn (2024) Microsoft Fabric: Share your SQL database and manage permissions [link]
[2] Microsoft Learn (2024) Microsoft Fabric: Share data and manage access to your SQL database in Microsoft Fabric  [link]
[3] Microsoft Learn (2024) Authorization in SQL database in Microsoft Fabric [link]
[4] Microsoft Learn (2024) Authentication in SQL database in Microsoft Fabric [link]

[5] Microsoft Fabric Learn (2025) Manage access for SQL databases in Microsoft Fabric with workspace roles and item permissions [link

21 December 2024

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part I: Creating a View) [new feature]

At this year's Ignite conference it was announced that SQL databases are available now in Fabric in public preview (see SQL Databases for OLTP scenarios, [1]). To test the functionality one can import the SalesLT database in a newly created empty database, which made available several tables:
 
-- tables from SalesLT schema (queries should be run individually)
SELECT TOP 100 * FROM SalesLT.Address
SELECT TOP 100 * FROM SalesLT.Customer
SELECT TOP 100 * FROM SalesLT.CustomerAddress
SELECT TOP 100 * FROM SalesLT.Product ITM 
SELECT TOP 100 * FROM SalesLT.ProductCategory
SELECT TOP 100 * FROM SalesLT.ProductDescription 
SELECT TOP 100 * FROM SalesLT.ProductModel  
SELECT TOP 100 * FROM SalesLT.ProductModelProductDescription 
SELECT TOP 100 * FROM SalesLT.SalesOrderDetail
SELECT TOP 100 * FROM SalesLT.SalesOrderHeader

The schema seems to be slightly different than the schemas used in previous tests made in SQL Server, though with a few minor changes - mainly removing the fields not available - one can create the below view:
 
-- drop the view (cleaning step)
-- DROP VIEW IF EXISTS SalesLT.vProducts 

-- create the view
CREATE OR ALTER VIEW SalesLT.vProducts
-- Products (view) 
AS 
SELECT ITM.ProductID 
, ITM.ProductCategoryID 
, PPS.ParentProductCategoryID 
, ITM.ProductModelID 
, ITM.Name ProductName 
, ITM.ProductNumber 
, PPM.Name ProductModel 
, PPS.Name ProductSubcategory 
, PPC.Name ProductCategory  
, ITM.Color 
, ITM.StandardCost 
, ITM.ListPrice 
, ITM.Size 
, ITM.Weight 
, ITM.SellStartDate 
, ITM.SellEndDate 
, ITM.DiscontinuedDate 
, ITM.ModifiedDate 
FROM SalesLT.Product ITM 
     JOIN SalesLT.ProductModel PPM 
       ON ITM.ProductModelID = PPM.ProductModelID 
     JOIN SalesLT.ProductCategory PPS 
        ON ITM.ProductCategoryID = PPS.ProductCategoryID 
         JOIN SalesLT.ProductCategory PPC 
            ON PPS.ParentProductCategoryID = PPC.ProductCategoryID

-- review the data
SELECT top 100 *
FROM SalesLT.vProducts

In the view were used FULL JOINs presuming thus that a value was provided for each record. It's always a good idea to test the presumptions when creating the queries, and eventually check from time to time whether something changed. In some cases it's a good idea to always use LEFT JOINs, though this might have impact on performance and probably other consequences as well.
 
-- check if all models are available
SELECT top 100 ITM.*
FROM SalesLT.Product ITM 
    LEFT JOIN SalesLT.ProductModel PPM 
       ON ITM.ProductModelID = PPM.ProductModelID 
WHERE PPM.ProductModelID IS NULL

-- check if all models are available
SELECT top 100 ITM.*
FROM SalesLT.Product ITM 
    LEFT JOIN SalesLT.ProductCategory PPS 
        ON ITM.ProductCategoryID = PPS.ProductCategoryID 
WHERE PPS.ProductCategoryID IS NULL

-- check if all categories are available
SELECT PPS.*
FROM SalesLT.ProductCategory PPS 
     LEFT JOIN SalesLT.ProductCategory PPC 
       ON PPS.ParentProductCategoryID = PPC.ProductCategoryID
WHERE PPC.ProductCategoryID IS NULL

Because the Product categories have an hierarchical structure, it's a good idea to check the hierarchy as well:
 
-- check the hierarchical structure 
SELECT PPS.ProductCategoryId 
, PPS.ParentProductCategoryId 
, PPS.Name ProductCategory
, PPC.Name ParentProductCategory
FROM SalesLT.ProductCategory PPS 
     LEFT JOIN SalesLT.ProductCategory PPC 
       ON PPS.ParentProductCategoryID = PPC.ProductCategoryID
--WHERE PPC.ProductCategoryID IS NULL
ORDER BY IsNull(PPC.Name, PPS.Name)

This last query can be consolidated in its own view and the previous view changed, if needed.

One can then save all the code as a file. 
Except some small glitches in the editor, everything went smoothly. 

Notes:
1) One can suppose that many or most of the queries created in the previous versions of SQL Server work also in SQL databases. The future and revised posts on such topics are labelled under sql database.
2) During the various tests I got the following error message when trying to create a table:
"The external policy action 'Microsoft.Sql/Sqlservers/Databases/Schemas/Tables/Create' was denied on the requested resource."
At least in my case all I had to do was to select "SQL Database" instead of "SQL analytics endpoint" in the web editor. Check the top right dropdown below your user information.
[3] For a full least of the available features see [2].

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) SQL database in Microsoft Fabric (Preview) [link]
[2] Microsoft Learn (2024) Features comparison: Azure SQL Database and SQL database in Microsoft Fabric (preview) [link]

17 March 2024

🧭Business Intelligence: Data Products (Part II: The Complexity Challenge)

Business Intelligence
Business Intelligence Series

Creating data products within a data mesh resumes in "partitioning" a given set of inputs, outputs and transformations to create something that looks like a Lego structure, in which each Lego piece represents a data product. The word partition is improperly used as there can be overlapping in terms of inputs, outputs and transformations, though in an ideal solution the outcome should be close to a partition.

If the complexity of inputs and outputs can be neglected, even if their number could amount to a big number, not the same can be said about the transformations that must be performed in the process. Moreover, the transformations involve reengineering the logic built in the source systems, which is not a trivial task and must involve adequate testing. The transformations are a must and there's no way to avoid them. 

When designing a data warehouse or data mart one of the goals is to keep the redundancy of the transformations and of the intermediary results to a minimum to minimize the unnecessary duplication of code and data. Code duplication becomes usually an issue when the logic needs to be changed, and in business contexts that can happen often enough to create other challenges. Data duplication becomes an issue when they are not in synch, fact derived from code not synchronized or with different refresh rates.

Building the transformations as SQL-based database objects has its advantages. There were many attempts for providing non-SQL operators for the same (in SSIS, Power Query) though the solutions built based on them are difficult to troubleshoot and maintain, the overall complexity increasing with the volume of transformations that must be performed. In data mashes, the complexity increases also with the number of data products involved, especially when there are multiple stakeholders and different goals involved (see the challenges for developing data marts supposed to be domain-specific). 

To growing complexity organizations answer with complexity. On one side the teams of developers, business users and other members of the governance teams who together with the solution create an ecosystem. On the other side, the inherent coordination and organization meetings, managing proposals, the negotiation of scope for data products, their design, testing, etc.  The more complex the whole ecosystem becomes, the higher the chances for systemic errors to occur and multiply, respectively to create unwanted behavior of the parties involved. Ecosystems are challenging to monitor and manage. 

The more complex the architecture, the higher the chances for failure. Even if some organizations might succeed, it doesn't mean that such an endeavor is for everybody - a certain maturity in building data architectures, data-based artefacts and managing projects must exist in the organization. Many organizations fail in addressing basic analytical requirements, why would one think that they are capable of handling an increased complexity? Even if one breaks the complexity of a data warehouse to more manageable units, the complexity is just moved at other levels that are more difficult to manage in ensemble. 

Being able to audit and test each data product individually has its advantages, though when a data product becomes part of an aggregate it can be easily get lost in the bigger picture. Thus, is needed a global observability framework that allows to monitor the performance and health of each data product in aggregate. Besides that, there are needed event brokers and other mechanisms to handle failure, availability, security, etc. 

Data products make sense in certain scenarios, especially when the complexity of architectures is manageable, though attempting to redesign everything from their perspective is like having a hammer in one's hand and treating everything like a nail.

Previous Post <<||>> Next Post

30 December 2018

🔭Data Science: Testing (Just the Quotes)

"We must trust to nothing but facts: These are presented to us by Nature, and cannot deceive. We ought, in every instance, to submit our reasoning to the test of experiment, and never to search for truth but by the natural road of experiment and observation." (Antoin-Laurent de Lavoisiere, "Elements of Chemistry", 1790)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"A discoverer is a tester of scientific ideas; he must not only be able to imagine likely hypotheses, and to select suitable ones for investigation, but, as hypotheses may be true or untrue, he must also be competent to invent appropriate experiments for testing them, and to devise the requisite apparatus and arrangements." (George Gore, "The Art of Scientific Discovery", 1878)

"The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they are therefore no substitutes for such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in explaining the conclusions founded upon them." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"To a scientist a theory is something to be tested. He seeks not to defend his beliefs, but to improve them. He is, above everything else, an expert at ‘changing his mind’." (Wendell Johnson, 1946)

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"Errors of the third kind happen in conventional tests of differences of means, but they are usually not considered, although their existence is probably recognized. It seems to the author that there may be several reasons for this among which are 1) a preoccupation on the part of mathematical statisticians with the formal questions of acceptance and rejection of null hypotheses without adequate consideration of the implications of the error of the third kind for the practical experimenter, 2) the rarity with which an error of the third kind arises in the usual tests of significance." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"The only relevant test of the validity of a hypothesis is comparison of prediction with experience." (Milton Friedman, "Essays in Positive Economics", 1953)

"The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator." (Frederick Mosteller, "Selected Quantitative Techniques", 1954)

"The methods of science may be described as the discovery of laws, the explanation of laws by theories, and the testing of theories by new observations. A good analogy is that of the jigsaw puzzle, for which the laws are the individual pieces, the theories local patterns suggested by a few pieces, and the tests the completion of these patterns with pieces previously unconsidered." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"Science is the creation of concepts and their exploration in the facts. It has no other test of the concept than its empirical truth to fact." (Jacob Bronowski, "Science and Human Values", 1956)

"Null hypotheses of no difference are usually known to be false before the data are collected [...] when they are, their rejection or acceptance simply reflects the size of the sample and the power of the test, and is not a contribution to science." (I Richard Savage, "Nonparametric statistics", Journal of the American Statistical Association 52, 1957)

"The well-known virtue of the experimental method is that it brings situational variables under tight control. It thus permits rigorous tests of hypotheses and confidential statements about causation. The correlational method, for its part, can study what man has not learned to control. Nature has been experimenting since the beginning of time, with a boldness and complexity far beyond the resources of science. The correlator’s mission is to observe and organize the data of nature’s experiments." (Lee J Cronbach, "The Two Disciplines of Scientific Psychology", The American Psychologist Vol. 12, 1957)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"One feature [...] which requires much more justification than is usually given, is the setting up of unplausible null hypotheses. For example, a statistician may set out a test to see whether two drugs have exactly the same effect, or whether a regression line is exactly straight. These hypotheses can scarcely be taken literally." (Cedric A B Smith, "Book review of Norman T. J. Bailey: Statistical Methods in Biology", Applied Statistics 9, 1960)

"The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true." (William W Rozeboom, "The fallacy of the null–hypothesis significance test", Psychological Bulletin 57, 1960)

"It is easy to obtain confirmations, or verifications, for nearly every theory - if we look for confirmations. Confirmations should count only if they are the result of risky predictions. […] A theory which is not refutable by any conceivable event is non-scientific. Irrefutability is not a virtue of a theory (as people often think) but a vice. Every genuine test of a theory is an attempt to falsify it, or refute it." (Karl R Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"The final test of a theory is its capacity to solve the problems which originated it." (George Dantzig, "Linear Programming and Extensions", 1963)

"The mediation of theory and praxis can only be clarified if to begin with we distinguish three functions, which are measured in terms of different criteria: the formation and extension of critical theorems, which can stand up to scientific discourse; the organization of processes of enlightenment, in which such theorems are applied and can be tested in a unique manner by the initiation of processes of reflection carried on within certain groups toward which these processes have been directed; and the selection of appropriate strategies, the solution of tactical questions, and the conduct of the political struggle. On the first level, the aim is true statements, on the second, authentic insights, and on the third, prudent decisions." (Jürgen Habermas, "Introduction to Theory and Practice", 1963)

"The null hypothesis of no difference has been judged to be no longer a sound or fruitful basis for statistical investigation. […] Significance tests do not provide the information that scientists need, and, furthermore, they are not the most effective method for analyzing and summarizing data." (Cherry A Clark, "Hypothesis Testing in Relation to Statistical Methodology", Review of Educational Research Vol. 33, 1963)

"The usefulness of the models in constructing a testable theory of the process is severely limited by the quickly increasing number of parameters which must be estimated in order to compare the predictions of the models with empirical results" (Anatol Rapoport, "Prisoner's Dilemma: A study in conflict and cooperation", 1965)

"The validation of a model is not that it is 'true' but that it generates good testable hypotheses relevant to important problems.” (Richard Levins, "The Strategy of Model Building in Population Biology”, 1966)

"Discovery always carries an honorific connotation. It is the stamp of approval on a finding of lasting value. Many laws and theories have come and gone in the history of science, but they are not spoken of as discoveries. […] Theories are especially precarious, as this century profoundly testifies. World views can and do often change. Despite these difficulties, it is still true that to count as a discovery a finding must be of at least relatively permanent value, as shown by its inclusion in the generally accepted body of scientific knowledge." (Richard J. Blackwell, "Discovery in the Physical Sciences", 1969)

"Science consists simply of the formulation and testing of hypotheses based on observational evidence; experiments are important where applicable, but their function is merely to simplify observation by imposing controlled conditions." (Henry L Batten, "Evolution of the Earth", 1971)

"A hypothesis is empirical or scientific only if it can be tested by experience. […] A hypothesis or theory which cannot be, at least in principle, falsified by empirical observations and experiments does not belong to the realm of science." (Francisco J Ayala, "Biological Evolution: Natural Selection or Random Walk", American Scientist, 1974)

"An experiment is a failure only when it also fails adequately to test the hypothesis in question, when the data it produces don't prove anything one way or the other." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)

"Science is systematic organisation of knowledge about the universe on the basis of explanatory hypotheses which are genuinely testable. Science advances by developing gradually more comprehensive theories; that is, by formulating theories of greater generality which can account for observational statements and hypotheses which appear as prima facie unrelated." (Francisco J Ayala, "Studies in the Philosophy of Biology: Reduction and Related Problems", 1974)

"A good scientific law or theory is falsifiable just because it makes definite claims about the world. For the falsificationist, If follows fairly readily from this that the more falsifiable a theory is the better, in some loose sense of more. The more a theory claims, the more potential opportunities there will be for showing that the world does not in fact behave in the way laid down by the theory. A very good theory will be one that makes very wide-ranging claims about the world, and which is consequently highly falsifiable, and is one that resists falsification whenever it is put to the test." (Alan F Chalmers,  "What Is This Thing Called Science?", 1976)

"Tests appear to many users to be a simple way to discharge the obligation to provide some statistical treatment of the data." (H V Roberts, "For what use are tests of hypotheses and tests of significance",  Communications in Statistics [Series A], 1976)

"Prediction can never be absolutely valid and therefore science can never prove some generalization or even test a single descriptive statement and in that way arrive at final truth." (Gregory Bateson, "Mind and Nature, A necessary unity", 1979)

"The fact must be expressed as data, but there is a problem in that the correct data is difficult to catch. So that I always say 'When you see the data, doubt it!' 'When you see the measurement instrument, doubt it!' [...]For example, if the methods such as sampling, measurement, testing and chemical analysis methods were incorrect, data. […] to measure true characteristics and in an unavoidable case, using statistical sensory test and express them as data." (Kaoru Ishikawa, Annual Quality Congress Transactions, 1981)

"All interpretations made by a scientist are hypotheses, and all hypotheses are tentative. They must forever be tested and they must be revised if found to be unsatisfactory. Hence, a change of mind in a scientist, and particularly in a great scientist, is not only not a sign of weakness but rather evidence for continuing attention to the respective problem and an ability to test the hypothesis again and again." (Ernst Mayr, "The Growth of Biological Thought: Diversity, Evolution and Inheritance", 1982)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"Models are often used to decide issues in situations marked by uncertainty. However statistical differences from data depend on assumptions about the process which generated these data. If the assumptions do not hold, the inferences may not be reliable either. This limitation is often ignored by applied workers who fail to identify crucial assumptions or subject them to any kind of empirical testing. In such circumstances, using statistical procedures may only compound the uncertainty." (David A Greedman & William C Navidi, "Regression Models for Adjusting the 1980 Census", Statistical Science Vol. 1 (1), 1986)

"Science has become a social method of inquiring into natural phenomena, making intuitive and systematic explorations of laws which are formulated by observing nature, and then rigorously testing their accuracy in the form of predictions. The results are then stored as written or mathematical records which are copied and disseminated to others, both within and beyond any given generation. As a sort of synergetic, rigorously regulated group perception, the collective enterprise of science far transcends the activity within an individual brain." (Lynn Margulis & Dorion Sagan, "Microcosmos", 1986)

"Beware of the problem of testing too many hypotheses; the more you torture the data, the more likely they are to confess, but confessions obtained under duress may not be admissible in the court of scientific opinion." (Stephen M. Stigler, "Neutral Models in Biology", 1987)

"Prediction can never be absolutely valid and therefore science can never prove some generalization or even test a single descriptive statement and in that way arrive at final truth." (Gregory Bateson, Mind and Nature: A necessary unity", 1988)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"The heart of the scientific method is the problem-hypothesis-test process. And, necessarily, the scientific method involves predictions. And predictions, to be useful in scientific methodology, must be subject to test empirically." (Paul Davies, "The Cosmic Blueprint: New Discoveries in Nature's Creative Ability to, Order the Universe", 1988)

"Science doesn’t purvey absolute truth. Science is a mechanism, a way of trying to improve your knowledge of nature. It’s a system for testing your thoughts against the universe, and seeing whether they match." (Isaac Asimov, [interview with Bill Moyers in The Humanist] 1989)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen, "Things I Have Learned (So Far)", American Psychologist, 1990)

"How has the virtually barren technique of hypothesis testing come to assume such importance in the process by which we arrive at our conclusions from our data?" (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"The amount of understanding produced by a theory is determined by how well it meets the criteria of adequacy - testability, fruitfulness, scope, simplicity, conservatism - because these criteria indicate the extent to which a theory systematizes and unifies our knowledge." (Theodore Schick Jr.,  "How to Think about Weird Things: Critical Thinking for a New Age", 1995)

"The science of statistics may be described as exploring, analyzing and summarizing data; designing or choosing appropriate ways of collecting data and extracting information from them; and communicating that information. Statistics also involves constructing and testing models for describing chance phenomena. These models can be used as a basis for making inferences and drawing conclusions and, finally, perhaps for making decisions." (Fergus Daly et al, "Elements of Statistics", 1995)

"Science is distinguished not for asserting that nature is rational, but for constantly testing claims to that or any other affect by observation and experiment." (Timothy Ferris, "The Whole Shebang: A State-of-the Universe’s Report", 1996)

"There are two kinds of mistakes. There are fatal mistakes that destroy a theory; but there are also contingent ones, which are useful in testing the stability of a theory." (Gian-Carlo Rota, [lecture] 1996)

"Validation is the process of testing how good the solutions produced by a system are. The results produced by a system are usually compared with the results obtained either by experts or by other systems. Validation is an extremely important part of the process of developing every knowledge-based system. Without comparing the results produced by the system with reality, there is little point in using it." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"The rate of the development of science is not the rate at which you make observations alone but, much more important, the rate at which you create new things to test." (Richard Feynman, "The Meaning of It All", 1998)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The greatest plus of data modeling is that it produces a simple and understandable picture of the relationship between the input variables and responses [...] different models, all of them equally good, may give different pictures of the relation between the predictor and response variables [...] One reason for this multiplicity is that goodness-of-fit tests and other methods for checking fit give a yes–no answer. With the lack of power of these tests with data having more than a small number of dimensions, there will be a large number of models whose fit is acceptable. There is no way, among the yes–no methods for gauging fit, of determining which is the better model." (Leo Breiman, "Statistical Modeling: The two cultures", Statistical Science 16(3), 2001)

"When significance tests are used and a null hypothesis is not rejected, a major problem often arises - namely, the result may be interpreted, without a logical basis, as providing evidence for the null hypothesis." (David F Parkhurst, "Statistical Significance Tests: Equivalence and Reverse Tests Should Reduce Misinterpretation", BioScience Vol. 51 (12), 2001)

"Visualizations can be used to explore data, to confirm a hypothesis, or to manipulate a viewer. [...] In exploratory visualization the user does not necessarily know what he is looking for. This creates a dynamic scenario in which interaction is critical. [...] In a confirmatory visualization, the user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System parameters are often predetermined." (Usama Fayyad et al, "Information Visualization in Data Mining and Knowledge Discovery", 2002)

"There is a tendency to use hypothesis testing methods even when they are not appropriate. Often, estimation and confidence intervals are better tools. Use hypothesis testing only when you want to test a well-defined hypothesis." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"In science, for a theory to be believed, it must make a prediction - different from those made by previous theories - for an experiment not yet done. For the experiment to be meaningful, we must be able to get an answer that disagrees with that prediction. When this is the case, we say that a theory is falsifiable - vulnerable to being shown false. The theory also has to be confirmable, it must be possible to verify a new prediction that only this theory makes. Only when a theory has been tested and the results agree with the theory do we advance the statement to the rank of a true scientific theory." (Lee Smolin, "The Trouble with Physics", 2006)

"A type of error used in hypothesis testing that arises when incorrectly rejecting the null hypothesis, although it is actually true. Thus, based on the test statistic, the final conclusion rejects the Null hypothesis, but in truth it should be accepted. Type I error equates to the alpha (α) or significance level, whereby the generally accepted default is 5%." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the 'theory' of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"In common usage, prediction means to forecast a future event. In data science, prediction more generally means to estimate an unknown value. This value could be something in the future (in common usage, true prediction), but it could also be something in the present or in the past. Indeed, since data mining usually deals with historical data, models very often are built and tested using events from the past." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"Data clusters are everywhere, even in random data. Someone who looks for an explanation will inevitably find one, but a theory that fits a data cluster is not persuasive evidence. The found explanation needs to make sense and it needs to be tested with uncontaminated data." (Gary Smith, "Standard Deviations", 2014)

"Machine learning is a science and requires an objective approach to problems. Just like the scientific method, test-driven development can aid in solving a problem. The reason that TDD and the scientific method are so similar is because of these three shared characteristics: Both propose that the solution is logical and valid. Both share results through documentation and work over time. Both work in feedback loops." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

"The dialectical interplay of experiment and theory is a key driving force of modern science. Experimental data do only have meaning in the light of a particular model or at least a theoretical background. Reversely theoretical considerations may be logically consistent as well as intellectually elegant: Without experimental evidence they are a mere exercise of thought no matter how difficult they are. Data analysis is a connector between experiment and theory: Its techniques advise possibilities of model extraction as well as model testing with experimental data." (Achim Zielesny, "From Curve Fitting to Machine Learning" 2nd Ed., 2016)

"Bias is error from incorrect assumptions built into the model, such as restricting an interpolating function to be linear instead of a higher-order curve. [...] Errors of bias produce underfit models. They do not fit the training data as tightly as possible, were they allowed the freedom to do so. In popular discourse, I associate the word 'bias' with prejudice, and the correspondence is fairly apt: an apriori assumption that one group is inferior to another will result in less accurate predictions than an unbiased one. Models that perform lousy on both training and testing data are underfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Early stopping and regularization can ensure network generalization when you apply them properly. [...] With early stopping, the choice of the validation set is also important. The validation set should be representative of all points in the training set. When you use Bayesian regularization, it is important to train the network until it reaches convergence. The sum-squared error, the sum-squared weights, and the effective number of parameters should reach constant values when the network has converged. With both early stopping and regularization, it is a good idea to train the network starting from several different initial conditions. It is possible for either method to fail in certain circumstances. By testing several different initial conditions, you can verify robust network performance." (Mark H Beale et al, "Neural Network Toolbox™ User's Guide", 2017)

"Scientists generally agree that no theory is 100 percent correct. Thus, the real test of knowledge is not truth, but utility." (Yuval N Harari, "Sapiens: A brief history of humankind", 2017)

"Variance is error from sensitivity to fluctuations in the training set. If our training set contains sampling or measurement error, this noise introduces variance into the resulting model. [...] Errors of variance result in overfit models: their quest for accuracy causes them to mistake noise for signal, and they adjust so well to the training data that noise leads them astray. Models that do much better on testing data than training data are overfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"[...] a hypothesis test tells us whether the observed data are consistent with the null hypothesis, and a confidence interval tells us which hypotheses are consistent with the data." (William C Blackwelder)

22 December 2018

🔭Data Science: Significance (Just the Quotes)

"What the use of P [the significance level] implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred." (Harold Jeffreys, "Theory of Probability", 1939)

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"Errors of the third kind happen in conventional tests of differences of means, but they are usually not considered, although their existence is probably recognized. It seems to the author that there may be several reasons for this among which are 1) a preoccupation on the part of mathematical statisticians with the formal questions of acceptance and rejection of null hypotheses without adequate consideration of the implications of the error of the third kind for the practical experimenter, 2) the rarity with which an error of the third kind arises in the usual tests of significance." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"It will, of course, happen but rarely that the proportions will be identical, even if no real association exists. Evidently, therefore, we need a significance test to reassure ourselves that the observed difference of proportion is greater than could reasonably be attributed to chance. The significance test will test the reality of the association, without telling us anything about the intensity of association. It will be apparent that we need two distinct things: (a) a test of significance, to be used on the data first of all, and (b) some measure of the intensity of the association, which we shall only be justified in using if the significance test confirms that the association is real." (Michael J Moroney, "Facts from Figures", 1951)

"The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator." (Frederick Mosteller, "Selected Quantitative Techniques", 1954)

"Null hypotheses of no difference are usually known to be false before the data are collected [...] when they are, their rejection or acceptance simply reflects the size of the sample and the power of the test, and is not a contribution to science." (I Richard Savage, "Nonparametric Statistics", Journal of the American Statistical Association 52, 1957)

"[...] to make measurements and then ignore their magnitude would ordinarily be pointless. Exclusive reliance on tests of significance obscures the fact that statistical significance does not imply substantive significance." (I Richard Savage, "Nonparametric Statistics", Journal of the American Statistical Association 52, 1957)

"[...] the tests of null hypotheses of zero differences, of no relationships, are frequently weak, perhaps trivial statements of the researcher’s aims [...] in many cases, instead of the tests of significance it would be more to the point to measure the magnitudes of the relationships, attaching proper statements of their sampling variation. The magnitudes of relationships cannot be measured in terms of levels of significance." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"There are instances of research results presented in terms of probability values of ‘statistical significance’ alone, without noting the magnitude and importance of the relationships found. These attempts to use the probability levels of significance tests as measures of the strengths of relationships are very common and very mistaken." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true." (William W Rozeboom, "The fallacy of the null–hypothesis significance test", Psychological Bulletin 57, 1960)

"The null hypothesis of no difference has been judged to be no longer a sound or fruitful basis for statistical investigation. […] Significance tests do not provide the information that scientists need, and, furthermore, they are not the most effective method for analyzing and summarizing data." (Cherry A Clark, "Hypothesis Testing in Relation to Statistical Methodology", Review of Educational Research Vol. 33, 1963)

"[...] the test of significance has been carrying too much of the burden of scientific inference. It may well be the case that wise and ingenious investigators can find their way to reasonable conclusions from data because and in spite of their procedures. Too often, however, even wise and ingenious investigators [...] tend to credit the test of significance with properties it does not have." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"[...] we need to get on with the business of generating [...] hypotheses and proceed to do investigations and make inferences which bear on them, instead of [...] testing the statistical null hypothesis in any number of contexts in which we have every reason to suppose that it is false in the first place." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966) 

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"The idea of statistical significance is valuable because it often keeps us from announcing results that later turn out to be nonresults. A significant result tells us that enough cases were observed to provide reasonable assurance of a real effect. It does not necessarily mean, though, that the effect is big enough to be important." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"A tendency to drastically underestimate the frequency of coincidences is a prime characteristic of innumerates, who generally accord great significance to correspondences of all sorts while attributing too little significance to quite conclusive but less flashy statistical evidence." (John A Paulos, "Innumeracy: Mathematical Illiteracy and its Consequences", 1988)

"Which I would like to stress are: (1) A significant effect is not necessarily the same thing as an interesting effect. (2) A non-significant effect is not necessarily the same thing as no difference." (Christopher Chatfield, "Problem solving: a statistician’s guide", 1988)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen,"Things I Have Learned (So Far)", American Psychologist, 1990)

"I do not think that significance testing should be completely abandoned [...] and I don’t expect that it will be. But I urge researchers to provide estimates, with confidence intervals: scientific advance requires parameters with known reliability estimates. Classical confidence intervals are formally equivalent to a significance test, but they convey more information." (Nigel G Yoccoz, "Use, Overuse, and Misuse of Significance Tests in Evolutionary Biology and Ecology", Bulletin of the Ecological Society of America Vol. 72 (2), 1991)

"Rejection of a true null hypothesis at the 0.05 level will occur only one in 20 times. The overwhelming majority of these false rejections will be based on test statistics close to the borderline value. If the null hypothesis is false, the inter-ocular traumatic test ['hit between the eyes'] will often suffice to reject it; calculation will serve only to verify clear intuition." (Ward Edwards et al, "Bayesian Statistical Inference for Psychological Research", 1992) 

"Statistical significance testing can involve a tautological logic in which tired researchers, having collected data on hundreds of subjects, then conduct a statistical test to evaluate whether there were a lot of subjects, which the researchers already know, because they collected the data and know they are tired. This tautology has created considerable damage as regards the cumulation of knowledge." (Bruce Thompson, "Two and One-Half Decades of Leadership in Measurement and Evaluation", Journal of Counseling & Development 70 (3), 1992)

"[…] an honest exploratory study should indicate how many comparisons were made […] most experts agree that large numbers of comparisons will produce apparently statistically significant findings that are actually due to chance. The data torturer will act as if every positive result confirmed a major hypothesis. The honest investigator will limit the study to focused questions, all of which make biologic sense. The cautious reader should look at the number of ‘significant’ results in the context of how many comparisons were made." (James L Mills, "Data torturing", New England Journal of Medicine, 1993)

"Graphic misrepresentation is a frequent misuse in presentations to the nonprofessional. The granddaddy of all graphical offenses is to omit the zero on the vertical axis. As a consequence, the chart is often interpreted as if its bottom axis were zero, even though it may be far removed. This can lead to attention-getting headlines about 'a soar' or 'a dramatic rise (or fall)'. A modest, and possibly insignificant, change is amplified into a disastrous or inspirational trend." (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)

"When significance tests are used and a null hypothesis is not rejected, a major problem often arises - namely, the result may be interpreted, without a logical basis, as providing evidence for the null hypothesis." (David F Parkhurst, "Statistical Significance Tests: Equivalence and Reverse Tests Should Reduce Misinterpretation", BioScience Vol. 51 (12), 2001)

"If you flip a coin three times and it lands on heads each time, it's probably chance. If you flip it a hundred times and it lands on heads each time, you can be pretty sure the coin has heads on both sides. That's the concept behind statistical significance - it's the odds that the correlation (or other finding) is real, that it isn't just random chance." (T Colin Campbell, "The China Study", 2004)

"The dual meaning of the word significant brings into focus the distinction between drawing a mathematical inference and practical inference from statistical results." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"A type of error used in hypothesis testing that arises when incorrectly rejecting the null hypothesis, although it is actually true. Thus, based on the test statistic, the final conclusion rejects the Null hypothesis, but in truth it should be accepted. Type I error equates to the alpha (α) or significance level, whereby the generally accepted default is 5%." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)

"There are three possible reasons for [the] absence of predictive power. First, it is possible that the models are misspecified. Second, it is possible that the model’s explanatory factors are measured at too high a level of aggregation [...] Third, [...] the search for statistically significant relationships may not be the strategy best suited for evaluating our model’s ability to explain real world events [...] the lack of predictive power is the result of too much emphasis having been placed on finding statistically significant variables, which may be overdetermined. Statistical significance is generally a flawed way to prune variables in regression models [...] Statistically significant variables may actually degrade the predictive accuracy of a model [...] [By using] models that are constructed on the basis of pruning undertaken with the shears of statistical significance, it is quite possible that we are winnowing our models away from predictive accuracy." (Michael D Ward et al, "The perils of policy by p-value: predicting civil conflicts" Journal of Peace Research 47, 2010)

"If the group is large enough, even very small differences can become statistically significant." (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"These practices - selective reporting and data pillaging - are known as data grubbing. The discovery of statistical significance by data grubbing shows little other than the researcher’s endurance. We cannot tell whether a data grubbing marathon demonstrates the validity of a useful theory or the perseverance of a determined researcher until independent tests confirm or refute the finding. But more often than not, the tests stop there. After all, you won’t become a star by confirming other people’s research, so why not spend your time discovering new theories? The data-grubbed theory consequently sits out there, untested and unchallenged." (Gary Smith, "Standard Deviations", 2014)

"With fast computers and plentiful data, finding statistical significance is trivial. If you look hard enough, it can even be found in tables of random numbers." (Gary Smith, "Standard Deviations", 2014)

"In short, statistical significance does not mean your result has any practical significance. As for statistical insignificance, it doesn’t tell you much. A statistically insignificant difference could be nothing but noise, or it could represent a real effect that can be pinned down only with more data." (Alex Reinhart, "Statistics Done Wrong: The Woefully Complete Guide", 2015)

"Statistical significance is a concept used by scientists and researchers to set an objective standard that can be used to determine whether or not a particular relationship 'statistically' exists in the data. Scientists test for statistical significance to distinguish between whether an observed effect is present in the data (given a high degree of probability), or just due to chance. It is important to note that finding a statistically significant relationship tells us nothing about whether a relationship is a simple correlation or a causal one, and it also can’t tell us anything about whether some omitted factor is driving the result." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Statistical significance refers to the probability that something is true. It’s a measure of how probable it is that the effect we’re seeing is real (rather than due to chance occurrence), which is why it’s typically measured with a p-value. P, in this case, stands for probability. If you accept p-values as a measure of statistical significance, then the lower your p-value is, the less likely it is that the results you’re seeing are due to chance alone." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

More quotes on "Significance" at the-web-of-knowledge.blogspot.com.

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.