Showing posts with label synergy. Show all posts
Showing posts with label synergy. Show all posts

04 March 2021

Project Management: Projects' Dynamics II (Motion)

Project Management

Motion is the action or process of moving or being moved between an initial and a final or intermediate point. From the tinniest endeavors to the movement of the planets and beyond, everything is governed by motion. If the laws of nature seem to reveal an inner structural perfection, the activities people perform are quite often far from perfect, which is acceptable if we consider that (almost) everything is a learning process. What is probably less acceptable is the volume of inefficient motion we can easily categorize sometimes as waste.

The waste associated with motion can take many forms: sorting through a pile of tools to find the right one, searching for information, moving back and forth to reach a destination or achieve a goal, etc. Suboptimal motion can have important effects for an organization resulting in reduced productivity, respectively higher costs.

If for repetitive activities that involve a certain degree of similarity can be found typically a way to optimize the motion, the higher the uncertainty of the steps involved, the more difficult it becomes to optimize it. It’s the case of discovery endeavors in which the path between start and destination can’t be traced beforehand, respectively when the destination or path in between can’t be depicted to the needed level of detail. A strategy’s implementation, ERP implementations and other complex projects, especially the ones dealing with new technologies and/or incomplete knowledge, tend to be exploratory in nature and thus fall under this latter type a motion.

In other words, one must know at minimum the starting point, the destination, how to reach it and what it takes to reach it – resources, knowledge, skillset. When one has all this information one can go on and estimate how long it will take to reach the destination, though the estimate reflects the information available as well estimator’s skills in translating the information into a realistic roadmap. Each new information has the potential of impacting considerably the whole process, in extremis to the degree that one must start the journey anew. The complexity of such projects and the volume of uncertainty can make estimation difficult if not impossible, no matter how good estimators' skills are. At best an estimator can come with a best- and worst-case estimation, both however dependent on the assumptions made.

Moreover, complex projects are sensitive to the initial conditions or auspices under which they start. This sensitivity can turn a project in a totally different direction or pace, that can be reinforced positively or negatively as the project progresses. It’s a continuous interplay between internal and external factors and components that can create synergies or have adverse effects with the potential of reaching tipping points.

Related to the initial conditions, as the praxis sometimes shows, for entities found in continuous movement (like organizations) it’s also important to know from where one’s coming (and at what speed), as the previous impulse (driving force) can be further used or stirred as needed. Metaphorically, a project will need a certain time to find the right pace if it lacks the proper impulse.

Unless the team is trained to play and plays like an orchestra, the impact of deviations from expectations can be hardly quantified. To minimize the waste, ideally a project’s journey should minimally deviate from the optimal path, which can be challenging to achieve as a project’s mass can pull the project in one direction or the other. The more the project advances the bigger the mass, fact which can make a project unstoppable. When such high-mass projects are stopped, their impulse can continue to haunt the organization years after.

Previous Post <<||>> Next Post

17 December 2016

Strategic Management: Managing Change (Just the Quotes)

"Inconsistencies of opinion, arising from changes of circumstances, are often justifiable." (Daniel Webster, [speech] 1846)

"Progress, far from consisting in change, depends on retentiveness. [...] Those who cannot remember the past are condemned to fulfil it." (George Santayana, "The Life of Reason", 1905-1906)

"To improve is to change; to be perfect is to change often." (Winston Churchill, [Speech, House of Commons] 1925)

"When an active individual of sound common sense perceives the sordid state of the world, desire to change it becomes the guiding principle by which he organizes given facts and shapes them into a theory. The methods and categories as well as the transformation of the theory can be understood only in connection with his taking of sides. This, in turn, discloses both his sound common sense and the character of the world. Right thinking depends as much on right willing as right willing on right thinking." (Max Horkheimer, "The Latest Attack on Metaphysics", 1937)

"Many of the obstacles for change which have been attributed to human nature are in fact due to the inertia of institutions and to the voluntary desire of powerful classes to maintain the existing status." (John Dewey, 1938)

"Doing engineering is practicing the art of the organized forcing of technological change." (George Spencer-Brown, Electronics, Vol. 32 (47),  1959)

"People fear change because it undermines their security." (Thomas R Bennett III, Planning For Change, 1961)

"Every part of the system is so related to every other part that a change in a particular part causes a changes in all other parts and in the total system." (Arthur D Hall, "A methodology for systems engineering", 1962)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"So much has been written about employees' resistance to change that we are sometimes tempted to forget that they can also react favorably." (Nathaniel Stewart, "Leadership in the Office", 1963)

"We have overwhelming evidence that available information plus analysis does not lead to knowledge. The management science team can properly analyse a situation and present recommendations to the manager, but no change occurs. The situation is so familiar to those of us who try to practice management science that I hardly need to describe the cases." (C West Churchman, "Managerial acceptance of scientific recommendations", California Management Review Vol 7, 1964)

"[...] long-range plans are most valuable when they are revised and adjusted and set anew at shorter periods. The five-year plan is reconstructed each year in turn for the following five years. The soundest basis for this change is accurate measurement of the results of the first year's experience with the plan against the target of the plan." (George S Odiorne, "Management by Objectives", 1965)

"Any understanding of social and cultural change is impossible without a knowledge of the way media works as environments." (Marshall McLuhan, "The Medium is the Massage: An inventory of effects", 1967)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971) 

"Every goal and every change from the status quo has a price tag on it." (Lyle E Schaller, "The Change Agent", 1972)

"To be productive the individual has to have control, to a substantial extent, over the speed, rhythm, and attention spans with which he is working […] While work is, therefore, best laid out as uniform, working is best organized with a considerable degree of diversity. Working requires latitude to change speed, rhythm, and attention span fairly often. It requires fairly frequent changes in operating routines as well. What is good industrial engineering for work is exceedingly poor human engineering for the worker." (Peter F Drucker, "Management: Tasks, Responsibilities, Practices", 1973)

"Perhaps the fault [for the poor implementation record for models] lies in the origins of managerial model-making - the translation of methods and principles of the physical sciences into wartime operations research. [...] If hypothesis, data, and analysis lead to proof and new knowledge in science, shouldn’t similar processes lead to change in organizations? The answer is obvious-NO! Organizational changes (or decisions or policies) do not instantly pow from evidence, deductive logic, and mathematical optimization." (Edward B Roberts, "Interface", 1977)

"It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be. [...] This, in turn, means that our statesmen, our businessmen, our everyman must take on a science fictional way of thinking." (Isaac Asimov, "My Own View", Encyclopedia of Science Fiction, 1978)

"All organizations do change when put under sufficient pressure. This pressure must be either external to the organization or the result of very strong leadership." (Bruce Henderson, Henderson on Corporate Strategy, 1979)

"It is rare for any organization to generate sufficient pressure internally to produce significant change in direction. Indeed, internal pressure is likely to be regarded as a form of dissatisfaction with the organization's leadership." (Bruce Henderson, Henderson on Corporate Strategy, 1979)

"The acceptance of project management has not been easy, however. Many executives are not willing to accept change and are inflexible when it comes to adapting to a different environment." (Harold Kerzner, "Project Management", 1979)

"A competent manager can usually explain necessary planning changes in terms of specific facts which have contributed to the change. The existing fear, or attitude of failure, which results from missed completion dates should be replaced by a more constructive fear of failing to keep a plan updated." (Philip F Gehring Jr. & Udo W Pooch, "Advances in Computer Programming Management", 1980)

"[Organizational] change is intervention, and intervention even with good intentions can lead to negative results in both the short and long run. For example, a change in structure in going from application of one theory to another might cause the unwanted resignation of a key executive, or the loss of an important customer. [...] the factor of change, acts as an overriding check against continual organizational alterations. It means that regardless of how well meant a change is, or how much logic dictates this change, its possible negative effects must be carefully weighed against the hoped-for benefits." (William A Cohen, "Principles of Technical Management", 1980)

"[...] strategic change is likely to call for different management techniques than continuous running of well-established business-units.... If effectively done, strategic management can have even greater payoffs in rough seas than in clear sailing." (Boris Yavitz & William H Newman, "Strategy in Action", 1982)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Change occurs only when there is a confluence of changing values and economic necessity." (John Naisbett & Patricia Aburdene, "Re-inventing the Corporation", 1985)

"With the changes in technological complexity, especially in information technology, the leadership task has changed. Leadership in a networked organization is a fundamentally different thing from leadership in a traditional hierarchy." (Edgar Schein, "Organizational Culture and Leadership", 1985)

"An ability to tolerate ambiguity helps to avoid overdetermining one's goals. [...] As they proceed, peak performers can adjust goals. [...] What they are doing is balancing between change and stasis, between innovation and consolidation." (Charles Garfield, "Peak Performers", 1986)

"Most organizations, left to their own devices, are going to atrophy, to get so institutional, so bureaucratic, that they get to the point where their original reason for existence has been lost, and they stagnate. So you have to have change, and by that I mean dramatic change." (William G McGowan, Inc. Magazine, August 1986)

"[...] strategic planning and crisis management are complimentary. They coexist comfortably because both deal with the management of change. Crisis management concentrates on those brief moments of instability that must be dealt with first in order to get on with the larger and less time-sensitive job of reaching strategic objectives." (Gerald C Meyers, "When It Hits the Fan", 1986)

"The only [management] practice that's now constant is the practice of constantly accommodating to change." (William G. McGowan, Inc. Magazine, 1986)

"Training frequently fails to pay off in behavioral changes on the job: Trainees go back to work and do it the way they've always done it instead of the way you taught them to do it." (Ruth C Clark, "Manager, Training and Information Services", Training, 1986)

"You can change behavior in an entire organization, provided you treat training as a process rather than an event." (Edward W Jones, "Training", 1986)

"Constant change by everyone requires a dramatic increase in the capacity to accept disruption." (Tom Peters, "Thriving on Chaos", 1987)

"People are asking more cogent questions, and they're observing behavior that begins to be amenable to the ideas of chaotic dynamics." (James Ramsey, The New York Times, 1987)

"Problems can be reduced by allowing employees to help plan changes rather than directing them to execute a plan made by others." (Eugene Raudsepp, MTS Digest, 1987)

"There are only two ways to get people to support corporate change. You should give employees the information they need to understand the reasons for change, and put enough influence behind the information to [gain their] support." (Carla O'Dell, 1987)

"[...] a strategic inflection point is a time in the life of business when its fundamentals are about to change. That change can mean an opportunity to rise to new heights. But it may just as likely signal the beginning of the end." (Andrew S Grove, "Only the Paranoid Survive: How to Exploit the Crisis Points that Challenge Every Company and Career", 1988)

"[...] technology always fosters radical social change." (Neil Postman, "Conscientious Objections", 1988)

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"The importance of top management commitment to organizational change is so well accepted that it is almost cliché to repeat the fact. We would therefore expect managerial values to be just as important in this area as in others that require strategic direction and leadership" (Thomas A Kochan,"The Mutual Gains Enterprise", 1994) 

"Enterprise Engineering is not a single methodology, but a sophisticated synthesis of the most important and successful of today's change methods. 'Enterprise Engineering' first explains in detail all the critical disciplines (including continuous improvement, radical reinvention of business processes, enterprise redesign, and strategic visioning). It then illustrates how to custom-design the right combination of these change methods for your organization's specific needs." (James Martin, "The Great Transition, 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"Commonly, the threats to strategy are seen to emanate from outside a company because of changes in technology or the behavior of competitors. Although external changes can be the problem, the greater threat to strategy often comes from within. A sound strategy is undermined by a misguided view of competition, by organizational failures, and, especially, by the desire to grow." (Michael E Porter, "What is Strategy?", Harvard Business Review, 1996)

"Architecture is that set of design artifacts, or descriptive representations, that are relevant for describing an object, such that it can be produced to requirements (quality) as well as maintained over the period of its useful life (change)." (John A Zachman, "Enterprise architecture: The issue of the century", Database Programming and Design Vol. 10 (3), 1997)

"Issues of quality, timeliness and change are the conditions that are forcing us to face up to the issues of enterprise architecture. The precedent of all the older disciplines known today establishes the concept of architecture as central to the ability to produce quality and timely results and to manage change in complex products. Architecture is the cornerstone for containing enterprise frustration and leveraging technology innovations to fulfill the expectations of a viable and dynamic Information Age enterprise." (John Zachman, "Enterprise Architecture: The Issue of The Century", 1997)

"The basis of leadership is the capacity of the leader to change the mindset, the framework of the other person." (Warren Bennis, "Managing People is Like Herding Cats", 1997)

"Projects sometimes fail long before they deliver anything. At some point they may be determined to be too expensive to continue. Or perhaps they took too long to develop and the business need evaporated. Or perhaps the requirements change so often that the developers can never finish one thing without having to stop and start all over on something new. Certainly these are planning failures." (Kent Beck & Martin Fowler, "Planning Extreme Programming", 2000)

"Strategic planning and strategic change management are really 'strategic thinking'. It’s about clarity and simplicity, meaning and purpose, and focus and direction." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"The business changes. The technology changes. The team changes. The team members change. The problem isn't change, per se, because change is going to happen; the problem, rather, is the inability to cope with change when it comes." (Kent Beck, Extreme Programming Explained, 2000)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"An Enterprise Architecture is a dynamic and powerful tool that helps organisations understand their own structure and the way they work. It provides a ‘map’ of the enterprise and a ‘route planner’ for business and technology change. A well-constructed Enterprise Architecture provides a foundation for the ‘Agile’ business." (Bob Jarvis, "Enterprise Architecture: Understanding the Bigger Picture - A Best Practice Guide for Decision Makers in IT", 2003)

"An enterprise architecture is a blueprint for organizational change defined in models [using words, graphics, and other depictions] that describe (in both business and technology terms) how the entity operates today and how it intends to operate in the future; it also includes a plan for transitioning to this future state." (US Government Accountability Office, "Enterprise Architecture: Leadership Remains Key to Establishing and Leveraging Architectures for Organizational Transformation", GAO-06-831, 2006)

"Change pressures arise from different sectors of a system. At times it is mandated from the top of a hierarchy, other times it forms from participants at a grass-roots level. Some changes are absorbed by the organization without significant impact on, or alterations of, existing methods. In other cases, change takes root. It causes the formation of new methods (how things are done and what is possible) within the organization." (George Siemens, "Knowing Knowledge", 2006)

"Enterprise architecture is the process of translating business vision and strategy into effective enterprise change by creating, communicating and improving the key requirements, principles and models that describe the enterprise's future state and enable its evolution. The scope of the enterprise architecture includes the people, processes, information and technology of the enterprise, and their relationships to one another and to the external environment. Enterprise architects compose holistic solutions that address the business challenges of the enterprise and support the governance needed to implement them." (Anne Lapkin et al, "Gartner Clarifies the Definition of the Term 'Enterprise Architecture", 2008)

"Strategy is the serious work of figuring out how to translate vision and mission into action. Strategy is a general plan of action that describes resource allocation and other activities for dealing with the environment and helping the organization reach its goals. Like vision, strategy changes, but successful companies develop strategies that focus on core competence, develop synergy, and create value for customers. Strategy is implemented through the systems and structures that are the basic architecture for how things get done in the organization." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The other element of systems thinking is learning to influence the system with reinforcing feedback as an engine for growth or decline. [...] Without this kind of understanding, managers will hit blockages in the form of seeming limits to growth and resistance to change because the large complex system will appear impossible to manage. Systems thinking is a significant solution." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"Enterprise engineering is an emerging discipline that studies enterprises from an engineering perspective. The first paradigm of this discipline is that enterprises are purposefully designed and implemented systems. Consequently, they can be re-designed and re-implemented if there is a need for change. The second paradigm of enterprise engineering is that enterprises are social systems. This means that the system elements are social individuals, and that the essence of an enterprise's operation lies in the entering into and complying with commitments between these social individuals." (Erik Proper, "Advances in Enterprise Engineering II", 2009)

"And even if we make good plans based on the best information available at the time and people do exactly what we plan, the effects of our actions may not be the ones we wanted because the environment is nonlinear and hence is fundamentally unpredictable. As time passes the situation will change, chance events will occur, other agents such as customers or competitors will take actions of their own, and we will find that what we do is only one factor among several which create a new situation." (Stephen Bungay, "The Art of Action: How Leaders Close the Gaps between Plans, Actions, and Results", 2010)

"With each theory or model, our concepts of reality and of the fundamental constituents of the universe have changed." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

"Information or data is only valuable if it can be used to provide insights which then actually drive change. Sadly the most effort and expertise and applause is given to those who design and deliver incredibly complex statistical reviews of data over time - the beauty is in the complexity and the presentation not in the usability." (Alan Pennington, "The Customer Experience Book", 2016)

"It is not about deep data analysis to predict behaviour, it is about actively designing experiences and then applying data to enable the delivery. Cumulatively making lots of little changes using very specific pieces of data will aggregate to a bigger impact." (Alan Pennington, "The Customer Experience Book", 2016)

"Remember that for change to happen it has to be relevant at a local and individual level" (Alan Pennington, "The Customer Experience Book", 2016)

"Given enough time and enough users, even the most innocuous change will break something; your analysis of the value of that change must incorporate the difficulty in investigating, identifying, and resolving those breakages." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"Because management deals mostly with the status quo and leadership deals mostly with change, in the next century we are going to have to try to become much more skilled at creating leaders." (John P Kotter)

"Enterprise architecture (EA) is a discipline for proactively and holistically leading enterprise responses to disruptive forces by identifying and analyzing the execution of change toward desired business vision and outcomes. EA delivers value by presenting business and IT leaders with signature-ready recommendations for adjusting policies and projects to achieve target business outcomes that capitalize on relevant business disruptions. EA is used to steer decision making toward the evolution of the future state architecture." (Gartner)

"The normal 'cascade' strategy for implementing change is usually ineffective, because memories remain embedded in the way the organization works after the change. This applies particularly if the change relates to the culture rather than to work practices or systems." (Dick Beckhard)

"There is a remarkable agreement upon the definition of learning as being reflected in a change of behavior as the result of experience." (Ernest A Haggard)

16 December 2016

Strategic Management: Structure (Just the Quotes)

"The constructive process inheres in all forms of synergy, and the cooperation of antithetical forces in nature always results in making, that is, in creating something that did not exist before. But in the organic world this character of structure becomes the leading feature, and we have synthetic products consisting of tissues and organs serving definite purposes, which we call functions." (Lester F Ward, "Pure Sociology", 1903)

"Social structures are the products of social synergy, i.e., of the interaction of different social forces, all of which, in and of themselves, are destructive, but whose combined effect, mutually checking, constraining, and equilibrating one another, is to produce structures. The entire drift is toward economy, conservatism, and the prevention of waste. Social structures are mechanisms for the production of results, and the results cannot be secured without them. They are reservoirs of power." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"The true nature of the universal principle of synergy pervading all nature and creating all the different kinds of structure that we observe to exist, must now be made clearer. Primarily and essentially it is a process of equilibration, i.e., the several forces are first brought into a state of partial equilibrium. It begins in collision, conflict, antagonism, and opposition, and then we have the milder phases of antithesis, competition, and interaction, passing next into a modus vivendi, or compromise, and ending in collaboration and cooperation. […] The entire drift is toward economy, conservatism, and the prevention of waste." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"To manage is to forecast and plan, to organize, to command, to coordinate and to control. To foresee and plan means examining the future and drawing up the plan of action. To organize means building up the dual structure, material and human, of the undertaking. To command means binding together, unifying and harmonizing all activity and effort. To control means seeing that everything occurs in conformity with established rule and expressed demand." (Henri Fayol, 1916)

"The classical vertical arrangement for project management is characterized by an inherent self-sufficiency of operation. It has within its structure all the necessary specialized skills to provide complete engineering capabilities and it also has the ability to carry on its own laboratory investigations, preparation of drawings, and model or prototype manufacture. (Penton Publishing Company, Automation Vol 2, 1955)

"'Structure follows strategy' is one of the fundamental insights we have acquired in the last twenty years. Without understanding the mission, the objectives, and the strategy of the enterprise, managers cannot be managed, organizations cannot be designed, managerial jobs cannot be made productive. [...] Strategy determines what the key activities are in a given business. And strategy requires knowing 'what our business is and what it should be'." (Peter F Drucker, "Management: Tasks, Responsibilities, Practices", 1973)

"We never like to admit to ourselves that we have made a mistake. Organizational structures tend to accentuate this source of failure of information." (Kenneth E Boulding, "Toward a General Social Science", 1974)

"Every company has two organizational structures: the formal one is written on the charts; the other is the everyday living relationship of the men and women in the organization." (Harold Geneen & Alvin Moscow, Managing, 1984)

"Inertial pressures prevent most organizations from radically changing strategies and structures." (Michael T Hannan, "Organizational Ecology", 1989) 

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

"Systems thinking is based on the theory that a system is, in essence, circular. Using a systems approach in your strategic management, therefore, provides a circular implementing structure that can evolve, with continuously improving, self-checking, and learning capabilities [...]" (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Organizations are (1) social entities that (2) are goal-directed, (3) are designed as deliberately structured and coordinated activity systems, and (4) are linked to the external environment." (Richard Daft, "The Leadership Experience" , 2002)

"Strategy is the serious work of figuring out how to translate vision and mission into action. Strategy is a general plan of action that describes resource allocation and other activities for dealing with the environment and helping the organization reach its goals. Like vision, strategy changes, but successful companies develop strategies that focus on core competence, develop synergy, and create value for customers. Strategy is implemented through the systems and structures that are the basic architecture for how things get done in the organization." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"Systems thinking is a mental discipline and framework for seeing patterns and interrelationships. It is important to see organizational systems as a whole because of their complexity. Complexity can overwhelm managers, undermining confidence. When leaders can see the structures that underlie complex situations, they can facilitate improvement. But doing that requires a focus on the big picture." (Richard L Daft, "The Leadership Experience", 2008)

"The central issue is never strategy, structure, culture, or systems. The core of the matter is always about changing the behavior of people." (John Kotter, "The Heart of Change: Real-Life Stories of How People Change Their Organizations", 2012)

05 December 2016

Strategic Management: Opportunities (Just the Quotes)

"No man can tell what the future may bring forth, and small opportunities are often the beginning of great enterprises." (Demosthenes, "Ad Leptinum", cca. 4th century BC)

"Present opportunities are neglected, and attainable good is slighted, by minds busied in extensive ranges and intent upon future advantages." (Samuel Johnson, "The Idler", 1801)

"Results are obtained by exploiting opportunities, not by solving problems. [...] Resources, to produce results, must be allocated to opportunities rather than to problems." (Peter F Drucker, "Managing for Results: Economic Tasks and Risk-taking Decisions", 1964)

"The best way to come to grips with one’s own business knowledge is to look at the things the business has done well, and the things it apparently does poorly. […] Knowledge is a perishable commodity. It has to be reaffirmed, relearned, repracticed all the time. One has to work constantly at regaining one’s specific excellence. […] The right knowledge is the knowledge needed to exploit the market opportunities." (Peter F Drucker, "Managing for Results: Economic Tasks and Risk-taking Decisions", 1964)

"A natural companion to the competitive advantage is the synergy component of strategy. This requires that opportunities within the scope possess characteristics which will enhance synergy." (Igor Ansoff, "Corporate Strategy", 1965)

"Leaders do not avoid, repress, or deny conflict, but rather see it as an opportunity" (Warren G Bennis, "Why Leaders Can't Lead: The Unconscious Conspiracy Continues", 1976) 

"Needs and opportunities are always there. We just have to drive ourselves to find the practical ones." (Taiichi Ohno, "Toyota Production System: Beyond Large-Scale Production", 1978)

"No matter how difficult or unprecedented the problem, a breakthrough to the best possible solution can come only from a combination of rational analysis, based on the real nature of things, and imaginative reintegration of all the different items into a new pattern, using nonlinear brainpower. This is always the most effective approach to devising strategies for dealing successfully with challenges and opportunities, in the market arena as on the battlefield." (Kenichi Ohmae, "The Mind Of The Strategist", 1982)

"No other area offers richer opportunities for successful innovation than the unexpected success." (Peter Drucker, "Innovation and Entrepreneurship", 1985)

"Opportunities abound for linking productivity to business strategy." (John L Grahn, Harvard Business Review, 1986)

"The opportunities and threats existing in any situation always exceed the resources needed to exploit the opportunities or avoid the threats. Thus, strategy is essentially a problem of allocating resources. If strategy is to be successful, it must allocate superior resources against a decisive opportunity." (William Cohen, "Winning on the Marketing Front: The corporate manager's game plan", 1986)

"Problems can become opportunities when the right people come together." (Robert Redford, Harvard Business Review, 1987)

"But business fosters a particular fondness for tactics. That emphasis can lead to an imbalance that reduces the opportunities for success. We get so wrapped up in tactics - doing things to meet a quota or deadline, executing someone else's orders - that we miss the reason behind the tactics. Eventually the purpose of the tactic fades away, but the rules, quotas, deadlines, forms, and frustration remain." (Terry Richey, "The Marketer's Visual Tool Kit", 1994)

"Effective people are not problem-minded; they're opportunity minded. They feed opportunities and starve problems." (Stephen Covey, "Daily Reflections for Highly Effective People", 1994)

"The key to successful brainstorming lies in the team's willingness to suspend disbelief and experiment with new ways of looking at opportunities - something that can be done with a Morpho Box. At this point, concentrating on only the positive possibilities without reference to the inherent problems makes the process work." (Terry Richey, "The Marketer's Visual Tool Kit", 1994)

"Don’t solve problems; pursue opportunities. […] In both the short and long term, our ability to solve social and economic problems will be limited primarily to our lack of imagination in seizing opportunities, rather than trying to optimize solutions. There is more to be gained by producing more opportunities than by optimizing existing ones." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"[...] a strategic inflection point is a time in the life of business when its fundamentals are about to change. That change can mean an opportunity to rise to new heights. But it may just as likely signal the beginning of the end." (Andrew S Grove, "Only the Paranoid Survive", 1998)

"Clear goals, multiple strategies, clear roles and responsibilities, boldness, teamwork, speed, flexibility, the ability to change, managing risk, and seizing opportunities when they arise are important characteristics in gaining objectives." (Margaret Y Chu, "Blissful Data", 2004)

"[...] incomplete, inaccurate, and invalid data can cause problems for an organization. These problems are not only embarrassing and awkward but will also cause the organization to lose customers, new opportunities, and market share." (Margaret Y Chu, "Blissful Data", 2004)

"Decision making is the process of identifying problems and opportunities and then resolving them. Decision making involves effort before and after the actual choice." (Richard L Daft & Dorothy Marcic, "Understanding Management" 5th Ed., 2006)

"Cumulative errors depend largely on the big surprises, the big opportunities. Not only do economic, financial, and political predictors miss them, but they are quite ashamed to say anything outlandish to their clients - and yet events, it turns out, are almost always outlandish." (Nassim N Taleb, "The Black Swan: The Impact of the Highly Improbable", 2007) 

"Systemic problems trace back in the end to worldviews. But worldviews themselves are in flux and flow. Our most creative opportunity of all may be to reshape those worldviews themselves. New ideas can change everything." (Anthony Weston, "How to Re-Imagine the World", 2007)

"Every moment – every blink – is composed of a series of discrete moving parts, and every one of those parts offers an opportunity for intervention, for reform, and for correction." (Malcolm Gladwell, "Blink: The Power of Thinking Without Thinking", 2008)

"Synergy is the combined action that occurs when people work together to create new alternatives and solutions. In addition, the greatest opportunity for synergy occurs when people have different viewpoints, because the differences present new opportunities. The essence of synergy is to value and respect differences and take advantage of them to build on strengths and compensate for weaknesses." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"With respect to SWOT, threats are represented by the competitive products or their characteristics that offer the competition the best opportunity to damage your reputation." (Steven G Haines, "The Product Manager's Desk Reference", 2008)

"Bringing together the right information with the right people will dramatically improve a company's ability to develop and act on strategic business opportunities." (Bill Gates,  "Business @ the Speed of Thought: Succeeding in the Digital Economy", 2009) 

"Businesses always have opportunities to improve service, product lines, manufacturing techniques, and the like, and obviously these opportunities should be seized. But a business that constantly encounters major change also encounters many chances for major error." (Warren Buffett, "Warren Buffett on Business: Principles from the Sage of Omaha", 2009)

"Implementing new systems provides organizations with unique opportunities not only to improve their technologies, but to redefine and improve key business processes. Ultimately, for organizations to consider these new systems successes, the post-legacy environment must ensure that business processes, client end users, and systems work together." (Phil Simon, "Why New Systems Fail: An Insider’s Guide to Successful IT Projects", 2010)

"For the most part, the best opportunities now lie where your competitors have yet to establish themselves, not where they're already entrenched." (Paul Allen, "Idea Man: A Memoir by the Cofounder of Microsoft", 2011)

"Data are essential, but performance improvements and competitive advantage arise from analytics models that allow managers to predict and optimize outcomes. More important, the most effective approach to building a model rarely starts with the data; instead it originates with identifying the business opportunity and determining how the model can improve performance." (Dominic Barton & David Court, "Making Advanced Analytics Work for You", 2012) 

"Even with simple and usable models, most organizations will need to upgrade their analytical skills and literacy. Managers must come to view analytics as central to solving problems and identifying opportunities - to make it part of the fabric of daily operations." (Dominic Barton & David Court, "Making Advanced Analytics Work for You", 2012)

"The passage of time and the action of entropy bring about ever-greater complexity - a branching, blossoming tree of possibilities. Blossoming disorder (things getting worse), now unfolding within the constraints of the physics of our universe, creates novel opportunities for spontaneous ordered complexity to arise." (D J MacLennan, "Frozen to Life", 2015)

"A clear, thoughtful mission statement, developed collaboratively with and shared with managers, employees, and often customers, provides a shared sense of purpose, direction, and opportunity." (Philip Kotler & Kevin L Keller, "Marketing Management" 15th Ed., 2016)

"Sometimes, the best way to broaden your search is to look inside your own organization. Great solutions often come along at the wrong time, and the sprint can be a perfect opportunity to rejuvenate them. Also look for ideas that are in progress but unfinished - and even old ideas that have been abandoned." (Jake Knapp et al, "Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days", 2016)

"[...] strategy is about determining the problems and opportunities in front of you, defining them properly, and shaping a course of action that will give your business the greatest advantage. Balancing problem solving with creating and exploiting new opportunities through imagination and analysis is the cornerstone of a great strategy." (Eben Hewitt, "Technology Strategy Patterns: Architecture as strategy" 2nd Ed., 2019)

24 December 2014

Systems Engineering: Systems (Just the Quotes)

"Systems in many respects resemble machines. A machine is a little system, created to perform, as well as to connect together, in reality, those different movements and effects which the artist has occasion for.  A system is an imaginary machine invented to connect together in the fancy those different movements and effects which are already in reality performed." (Adam Smith, "The Wealth of Nations", 1776)

"A good method of discovery is to imagine certain members of a system removed and then see how what is left would behave: for example, where would we be if iron were absent from the world: this is an old example." (Georg C Lichtenberg, Notebook J, 1789-1793)

"A system is a whole which is composed of various parts. But it is not the same thing as an aggregate or heap. In an aggregate or heap, no essential relation exists between the units of which it is composed. In a heap of grain, or pile of stones, one may take away part without the other part being at all affected thereby. But in a system, each part has a fixed and necessary relation to the whole and to all the other parts. For this reason we may say that a building, or a peace of mechanisme, is a system. Each stone in the building, each wheel in the watch, plays a part, and is essential to the whole." (James E Creighton, "An Introductory Logic"‎, 1909)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"Given a situation, a system with a Leerstelle [a gap], whether a given completion (Lueckenfuellung) does justice to the structure, is the 'right' one, is often determined by the structure of the system, the situation. There are requirements, structurally determined; there are possible in pure cases unambiguous decisions as to which completion does justice to the situation, which does not, which violates the requirements and the situation." (Max Wertheimer, "Some Problems in the Theory of Ethics", Social Research Vol. 2 (3), 1935)

"A system is difficult to define, but it is easy to recognize some of its characteristics. A system possesses boundaries which segregate it from the rest of its field: it is cohesive in the sense that it resists encroachment from without […]" (Marvin G Cline, "Fundamentals of a theory of the self: some exploratory speculations‎", 1950)

"Now a system is said to be at equilibrium when it has no further tendency to change its properties." (Walter J Moore, "Physical chemistry", 1950)

"Every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system, Certain groups of observers, who share a common body of knowledge, and subscribe to a particular discipline, like 'physics' or 'biology' (in terms of which they pose hypotheses about the network), will pick out substantially the same systems. On the other hand, observers belonging to different groups will not agree about the activity which is a system." (Gordon Pask, "The Natural History of Networks", 1960)

"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)

"Every isolated determinate dynamic system, obeying unchanging laws, will ultimately develop some sort of organisms that are adapted to their environments." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"Synergy is the only word in our language that means behavior of whole systems unpredicted by the separately observed behaviors of any of the system's separate parts or any subassembly of the system's parts." (R Buckminster Fuller, "Operating Manual for Spaceship Earth", 1963)

"A system has order, flowing from point to point. If something dams that flow, order collapses. The untrained might miss that collapse until it was too late. That's why the highest function of ecology is the understanding of consequences." (Frank Herbert, "Dune", 1965)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"To find out what happens to a system when you interfere with it you have to interfere with it (not just passively observe it)." (George E P Box, "Use and Abuse of Regression", 1966)

"That a system is open means, not simply that it engages in interchanges with the environment, but that this interchange is an essential factor underlying the system's viability, its reproductive ability or continuity, and its ability to change. [...] Openness is an essential factor underlying a system's viability, continuity, and its ability to change."  (Walter F Buckley, "Sociology and modern systems theory", 1967)

"You cannot sum up the behavior of the whole from the isolated parts, and you have to take into account the relations between the various subordinate systems which are super-ordinated to them in order to understand the behavior of the parts." (Ludwig von Bertalanffy, "General System Theory", 1968)

"[…] as a model of a complex system becomes more complete, it becomes less understandable. Alternatively, as a model grows more realistic, it also becomes just as difficult to understand as the real world processes it represents." (Jay M Dutton & William H Starbuck," Computer simulation models of human behavior: A history of an intellectual technology", IEEE Transactions on Systems, 1971)

"A system in one perspective is a subsystem in another. But the systems view always treats systems as integrated wholes of their subsidiary components and never as the mechanistic aggregate of parts in isolable causal relations." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system." (Donella A Meadows, "The Limits to Growth", 1972)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972) 

"The system of nature, of which man is a part, tends to be self-balancing, self-adjusting, self-cleansing. Not so with technology." (Ernst F Schumacher, "Small is Beautiful", 1973)

"When a system is considered in two different states, the difference in volume or in any other property, between the two states, depends solely upon those states themselves and not upon the manner in which the system may pass from one state to the other." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974) 

"A system may be specified in either of two ways. In the first, which we shall call a state description, sets of abstract inputs, outputs and states are given, together with the action of the inputs on the states and the assignments of outputs to states. In the second, which we shall call a coordinate description, certain input, output and state variables are given, together with a system of dynamical equations describing the relations among the variables as functions of time. Modern mathematical system theory is formulated in terms of state descriptions, whereas the classical formulation is typically a coordinate description, for example a system of differential equations." (E S Bainbridge, "The Fundamental Duality of System Theory", 1975)

"Synergy means behavior of whole systems unpredicted by the behavior of their parts taken separately." (R Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"If all of the elements in a large system are loosely coupled to one another, then any one element can adjust to and modify a local a local unique contingency without affecting the whole system. These local adaptations can be swift, relatively economical, and substantial." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"In a loosely coupled system there is more room available for self-determination by the actors. If it is argued that a sense of efficacy is crucial for human beings. when a sense of efficacy might be greater in a loosely coupled system with autonomous units than it would be in a tightly coupled system where discretion is limited." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"For any system the environment is always more complex than the system itself. No system can maintain itself by means of a point-for-point correlation with its environment, i.e., can summon enough 'requisite variety' to match its environment. So each one has to reduce environmental complexity - primarily by restricting the environment itself and perceiving it in a categorically preformed way. On the other hand, the difference of system and environment is a prerequisite for the reduction of complexity because reduction can be performed only within the system, both for the system itself and its environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves at each level of system." (James G Miller, "Living Systems", 1978)

"An autopoietic system is organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components that: (a) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produce them and, (b) constitute it (the machine) as a concrete unity in the space in which they exist by specifying the topological domain of its realization as such a network." (Francisco Varela, "Principles of Biological Autonomy", 1979)

"A system is an internally organised whole where elements are so intimately connected that they operate as one in relation to external conditions and other systems. An element may be defined as the minimal unit performing a definite function in the whole. Systems may be either simple or complex. A complex system is one whose elements may also be regarded as systems or subsystems." (Alexander Spirkin, "Dialectical Materialism", 1983)

"But structure is not enough to make a system. A system consists of something more than structure: it is a structure with certain properties. When a structure is understood from the standpoint of its properties, it is understood as a system." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"Organization denotes those relations that must exist among the components of a system for it to be a member of a specific class. Structure denotes the components and relations that actually constitute a particular unity and make its organization real." (Humberto Maturana, "The Tree of Knowledge", 1987)

"The dynamics of any system can be explained by showing the relations between its parts and the regularities of their interactions so as to reveal its organization. For us to fully understand it, however, we need not only to see it as a unity operating in its internal dynamics, but also to see it in its circumstances, i.e., in the context to which its operation connects it. This understanding requires that we adopt a certain distance for observation, a perspective that in the case of historical systems implies a reference to their origin. This can be easy, for instance, in the case of man-made machines, for we have access to every detail of their manufacture. The situation is not that easy, however, as regards living beings: their genesis and their history are never directly visible and can be reconstructed only by fragments."  (Humberto Maturana, "The Tree of Knowledge", 1987)

"A system of variables is 'interrelated' if an action that affects or meant to affect one part of the system will also affect other parts of it. Interrelatedness guarantees that an action aimed at one variable will have side effects and long-term repercussions. A large number of variables will make it easy to overlook them." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

 "What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment.” (William E Deming, "The New Economics for Industry, Government, Education”, 1993)

"The impossibility of constructing a complete, accurate quantitative description of a complex system forces observers to pick which aspects of the system they most wish to understand." (Thomas Levenson, "Measure for Measure: A musical history of science", 1994)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...]A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. […] Nourishing the community means nourishing those relationships." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"The notion of system we are interested in may be described generally as a complex of elements or components directly or indirectly related in a network of interrelationships of various kinds, such that it constitutes a dynamic whole with emergent properties." (Walter F. Buckley, "Society: A Complex Adaptive System - Essays in Social Theory", 1998)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"One of the key insights of the systems approach has been the realization that the network is a pattern that is common to all life. Wherever we see life, we see networks." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows & Dennis L Meadows, "The Limits to Growth: The 30 Year Update", 2004)

"The progress of science requires the growth of understanding in both directions, downward from the whole to the parts and upward from the parts to the whole." (Freeman Dyson, "The Scientist As Rebel", 2006)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies." (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)

"Systemic problems trace back in the end to worldviews. But worldviews themselves are in flux and flow. Our most creative opportunity of all may be to reshape those worldviews themselves. New ideas can change everything." (Anthony Weston, "How to Re-Imagine the World", 2007)

"A model is a representation in that it (or its properties) is chosen to stand for some other entity (or its properties), known as the target system. A model is a tool in that it is used in the service of particular goals or purposes; typically these purposes involve answering some limited range of questions about the target system." (Wendy S Parker, "Confirmation and Adequacy-for-Purpose in Climate Modelling", Proceedings of the Aristotelian Society, Supplementary Volumes, Vol. 83, 2009)

"System theorists know that it's easy to couple simple-to-understand systems into a ‘super system’ that's capable of displaying behavioral modes that cannot be seen in any of its constituent parts. This is the process called ‘emergence’." (John L Casti, [interview with Austin Allen], 2012)

"When some systems are stuck in a dangerous impasse, randomness and only randomness can unlock them and set them free." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012) 

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W. Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Simplicity in a system tends to increase that system's efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system's inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

More quotes on "Systems" at the-web-of-knowledge.blogspot.com.

20 December 2014

Systems Engineering: Structure (Just the Quotes)

"Unity of plan everywhere lies hidden under the mask of diversity of structure - the complex is everywhere evolved out of the simple." (Thomas H Huxley, "A Lobster; or, the Study of Zoology", 1861)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"Given a situation, a system with a Leerstelle [a gap], whether a given completion (Lueckenfuellung) does justice to the structure, is the 'right' one, is often determined by the structure of the system, the situation. There are requirements, structurally determined; there are possible in pure cases unambiguous decisions as to which completion does justice to the situation, which does not, which violates the requirements and the situation." (Max Wertheimer, "Some Problems in the Theory of Ethics", Social Research Vol. 2 (3), 1935)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure", 1951)

"Equilibrium requires that the whole of the structure, the form of its elements, and the means of interconnection be so combined that at the supports there will automatically be produced passive forces or reactions that are able to balance the forces acting upon the structures, including the force of its own weight."  (Eduardo Torroja, "Philosophy of Structure", 1951)

"The analysis of engineering systems and the understanding of economic structure have advanced since then, and the time is now more ripe to bring these topics into a potentially fruitful marriage." (Arnold Tustin, "The Mechanism of Economic Systems", 1953)

"The Systems Engineering method recognizes each system is an integrated whole even though composed of devices, specialized structures and sub-functions. It is further recognized that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system function according to the weighted objectives and to achieve maximum capability of its parts." (Jack A Morton, "Integrating of Systems Engineering with Component Development", Electrical Manufacturing, 1959)

"The process of formulating and structuring a system are important and creative, since they provide and organize the information, which each system. establishes the number of objectives and the balance between them which will be optimized. Furthermore, they help identify and define the system parts. Furthermore, they help identify and define the system parts which make up its 'diverse, specialized structures and subfunctions'." (Harold Chestnut, "Systems Engineering Tools", 1965)

"The Systems engineering method recognizes each system is an integrated whole even though composed of diverse, specialized structures and sub-functions. It further recognizes that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system functions according to the weighted objectives and to achieve maximum compatibility of its parts." (Harold Chestnut, "Systems Engineering Tools," 1965)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non-linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"General systems theory is the scientific exploration of 'wholes' and 'wholeness' which, not so long ago, were considered metaphysical notions transcending the boundaries of science. Hierarchic structure, stability, teleology, differentiation, approach to and maintenance of steady states, goal-directedness - these are a few of such general system properties." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Yet while they exist, regardless of how long, each system has a specific structure made up of certain maintained relationships among its parts, and manifests irreducible characteristics of its own." (Ervin László, "Introduction to Systems Philosophy", 1972)

"General systems theory and cybernetics supplanted the classical conceptual model of a whole made out of parts and relations between parts with a model emphasizing the difference between systems and environments. This new paradigm made it possible to relate both the structures (including forms of differentiation) and processes of systems to the environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977

"The branch of modern science called cybernetics gives us concepts that describe the evolutionary process at both the level of intracellular structures and the level of social phenomena. The fundamental unity of the evolutionary process at all levels of organization is transformed from a philosophical view to a scientifically substantiated fact." (Valentin F Turchin, "The Phenomenon of Science: A cybernetic approach to human evolution", 1977)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Organization denotes those relations that must exist among the components of a system for it to be a member of a specific class. Structure denotes the components and relations that actually constitute a particular unity and make its organization real." (Humberto Maturana, "The Tree of Knowledge", 1987)

"Cybernetics, although not ignoring formal networks, suggests that an informal communications structure will also be present such that complex conversations at a number of levels between two or more individuals exist." (Robert L Flood, "Dealing with Complexity", 1988)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...] A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof  Capra, "The web of life: a new scientific understanding of living  systems", 1996)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Analysis of a system reveals its structure and how it works. It provides the knowledge required to make it work efficiently and to repair it when it stops working. Its product is know-how, knowledge, not understanding. To enable a system to perform effectively we must understand it - we must be able to explain its behavior—and this requires being aware of its functions in the larger systems of which it is a part." (Russell L Ackoff, "Re-Creating the Corporation", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The systems approach, on the other hand, provides an expanded structural design of organizations as living systems that more accurately reflects reality." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Self-organization [is] the appearance of structure or pattern without an external agent imposing it." (Francis Heylighen, "The science of Self-organization and Adaptivity", 2001)

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Systems thinking is a mental discipline and framework for seeing patterns and interrelationships. It is important to see organizational systems as a whole because of their complexity. Complexity can overwhelm managers, undermining confidence. When leaders can see the structures that underlie complex situations, they can facilitate improvement. But doing that requires a focus on the big picture." (Richard L Daft, "The Leadership Experience", 2008)

"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, God: "The Failed Hypothesis", 2010)

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

"The Second Law of Thermodynamics states that in an isolated system (one that is not taking in energy), entropy never decreases. (The First Law is that energy is conserved; the Third, that a temperature of absolute zero is unreachable.) Closed systems inexorably become less structured, less organized, less able to accomplish interesting and useful outcomes, until they slide into an equilibrium of gray, tepid, homogeneous monotony and stay there." (Steven Pinker, "The Second Law of Thermodynamics", 2017)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.