12 December 2014

🕸Systems Engineering: Networks (Just the Quotes)

"Any pattern of activity in a network, regarded as consistent by some observer, is a system." (Gordon Pask, "The Natural History of Networks", 1960)

"I am using the term 'network' in a general sense, to imply any set of interconnected and measurably active physical entities. Naturally occurring networks, of interest because they have a, self-organizing character, are, for example, a marsh, a colony of microorganisms, a research team, and a man." (Gordon Pask, "The Natural History of Networks", 1960)

"A NETWORK is a collection of connected lines, each of which indicates the movement of some quantity between two locations. Generally, entrance to a network is via a source (the starting point) and exit from a network is via a sink (the finishing point); the lines which form the network are called links (or arcs), and the points at which two or more links meet are called nodes." (Cecil W Lowe, "Critical Path Analysis by Bar Chart", 1966)

"An autopoietic system is organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components that: (a) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produce them and, (b) constitute it (the machine) as a concrete unity in the space in which they exist by specifying the topological domain of its realization as such a network." (Francisco Varela, "Principles of Biological Autonomy", 1979)

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 1979)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment." (William E Deming, "The New Economics for Industry, Government, Education”, 1993)

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The basic principle of an autocatalytic network is that even though nothing can make itself, everything in the pot has at least one reaction that makes it, involving only other things in the pot. It's a symbiotic system in which everything cooperates to make the metabolism work - the whole is greater than the sum of the parts." (J Doyne Farmer, "The Second Law of Organization" [in The Third Culture: Beyond the Scientific Revolution], 1995)

"The only organization capable of unprejudiced growth, or unguided learning, is a network. All other topologies limit what can happen." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The multiplier effect is a major feature of networks and flows. It arises regardless of the particular nature of the resource, be it goods, money, or messages." (John H Holland, "Hidden Order - How Adaptation Builds Complexity", 1995)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"The notion of system we are interested in may be described generally as a complex of elements or components directly or indirectly related in a network of interrelationships of various kinds, such that it constitutes a dynamic whole with emergent properties." (Walter F. Buckley, "Society: A Complex Adaptive System - Essays in Social Theory", 1998)

"Remember a networked learning machine’s most basic rule: strengthen the connections to those who succeed, weaken them to those who fail." (Howard Bloom, "Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st Century", 2000)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"One of the key insights of the systems approach has been the realization that the network is a pattern that is common to all life. Wherever we see life, we see networks." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"The networked world continuously refines, reinvents, and reinterprets knowledge, often in an autonomic manner." (Donald M Morris et al, "A revolution in knowledge sharing", 2003)

"Hierarchy adapts knowledge to the organization; a network adapts the organization to the knowledge." (George Siemens, "Knowing Knowledge", 2006)

"Nodes and connectors comprise the structure of a network. In contrast, an ecology is a living organism. It influences the formation of the network itself." (George Siemens, "Knowing Knowledge", 2006)

"If a network is solely composed of neighborhood connections, information must traverse a large number of connections to get from place to place. In a small-world network, however, information can be transmitted between any two nodes using, typically, only a small number of connections. In fact, just a small percentage of random, long-distance connections is required to induce such connectivity. This type of network behavior allows the generation of 'six degrees of separation' type results, whereby any agent can connect to any other agent in the system via a path consisting of only a few intermediate nodes." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)

"Networks may also be important in terms of view. Many models assume that agents are bunched together on the head of a pin, whereas the reality is that most agents exist within a topology of connections to other agents, and such connections may have an important influence on behavior. […] Models that ignore networks, that is, that assume all activity takes place on the head of a pin, can easily suppress some of the most interesting aspects of the world around us. In a pinhead world, there is no segregation, and majority rule leads to complete conformity - outcomes that, while easy to derive, are of little use." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)

"We are beginning to see the entire universe as a holographically interlinked network of energy and information, organically whole and self-referential at all scales of its existence. We, and all things in the universe, are non-locally connected with each other and with all other things in ways that are unfettered by the hitherto known limitations of space and time." (Ervin László, "Cosmos: A Co-creator's Guide to the Whole-World", 2010)

"The people we get along with, trust, feel simpatico with, are the strongest links in our networks." (Daniel Goleman, "Working With Emotional Intelligence", 2011) 

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

"If we create networks with the sole intention of getting something, we won't succeed. We can't pursue the benefits of networks; the benefits ensue from investments in meaningful activities and relationships." (Adam Grant, "Give and Take: A Revolutionary Approach to Success", 2013) 

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 2013) 

"All living systems are networks of smaller components, and the web of life as a whole is a multilayered structure of living systems nesting within other living systems - networks within networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

More quotes on "Networks" at the-web-of-knowledge.blogspot.com.

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.