01 November 2025

♟️Strategic Management: Game Theory (Just the Quotes)

"While these games are not typical for major economic processes, they contain some universally important traits of all games and the results derived from them are the basis of the general theory of games." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"At present game theory has, in my opinion, two important uses, neither of them related to games nor to conflict directly. First, game theory stimulates us to think about conflict in a novel way. Second, game theory leads to some genuine impasses, that is, to situations where its axiomatic base is shown to be insufficient for dealing even theoretically with certain types of conflict situations... Thus, the impact is made on our thinking process themselves, rather than on the actual content of our knowledge." (Anatol Rapoport, Fights, games, and debates", 1960)

"Although the drama of games of strategy is strongly linked with the psychological aspects of the conflict, game theory is not concerned with these aspects. Game theory, so to speak, plays the board. It is concerned only with the logical aspects of strategy." (Anatol Rapoport, "The Use and Misuse of Game Theory", 1962)

"Game theory applies to a very different type of conflict, now technically called a game. The well-known games such as poker, chess, ticktacktoe and so forth are games in the strict technical Bark and counterbark sense. But what makes parlor games is not their entertainment value or detachment from real life." (Anatol Rapoport, "The Use and Misuse of Game Theory", Scientific American 207, 1962)

"Whether game theory leads to clear-cut solutions, to vague solutions, or to impasses, it does achieve one thing. In bringing techniques of logical and mathematical analysis gives men an opportunity to bring conflicts up from the level of fights, where the intellect is beclouded by passions, to the level of games, where the intellect has a chance to operate." (Anatol Rapoport, "The Use and Misuse of Game Theory", Scientific American 207, 1962)

"Now we are looking for another basic outlook on the world - the world as organization. Such a conception - if it can be substantiated - would indeed change the basic categories upon which scientific thought rests, and profoundly influence practical attitudes. This trend is marked by the emergence of a bundle of new disciplines such as cybernetics, information theory, general system theory, theories of games, of decisions, of queuing and others; in practical applications, systems analysis, systems engineering, operations research, etc. They are different in basic assumptions, mathematical techniques and aims, and they are often unsatisfactory and sometimes contradictory. They agree, however, in being concerned, in one way or another, with ‘systems’, ‘wholes’ or ‘organizations’; and in their totality, they herald a new approach." (Ludwig von Bertalanffy, "General System Theory", 1968)

"A proven theorem of game theory states that every game with complete information possesses a saddle point and therefore a solution." (Richard A Epstein, "The Theory of Gambling and Statistical Logic" [Revised Edition], 1977)

"Game theory is a collection of mathematical models designed to study situations involving conflict and/or cooperation. It allows for a multiplicity of decision makers who may have different preferences and objectives. Such models involve a variety of different solution concepts concerned with strategic optimization, stability, bargaining, compromise, equity and coalition formation." (Notices of the American Mathematical Society Vol. 26 (1), 1979)

"Game theory is a theory of strategic interaction. That is to say, it is a theory of rational behavior in social situations in which each player has to choose his moves on the basis of what he thinks the other players' countermoves are likely to be." (John Harsanyi, "Games with Incomplete Information", 1997)

"An equilibrium is not always an optimum; it might not even be good. This may be the most important discovery of game theory." (Ivar Ekeland, "Le meilleur des mondes possibles" ["The Best of All Possible Worlds"], 2000)

Good decisions require that each decision-maker anticipate the decisions of the others. Game theory offers a systematic way of analysing strategic decision-making in interactive situations. [...] Game theory is not about 'playing' as usually understood. It is about conflict among rational but distrusting beings." (Geraldine Ryan & Seamus Coffey, "Games of Strategy", 2008)

"Game theory proposes a method called minimization-maximization (minimax) that determines the best possibility that is available to a player by following a decision tree that minimizes the opponent’s gain and maximizes the player’s own. This important algorithm is the basis for generating algorithms for chess programs." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Game theory postulates rational behavior for each participant. Each player is conscious of the rules and behaves in accordance with them, each player has sufficient knowledge of the situation in which he or she is involved to be able to evaluate what the best option is when it comes to taking action (a move), and each player takes into account the decisions that might be made by other participants and their repercussions with respect to his or her own decision. Game theory about zero-sum games with two participants is relevant for chess. In this type of situation, each action that is favorable to one participant" (player) is proportionally unfavorable for the opponent. Thus, the gain of one represents the loss of the other." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Game theory covers an incredibly broad spectrum of scenarios of cooperation and competition, but the field began with those resembling heads-up poker: two-person contests where one player’s gain is another player’s loss. Mathematicians analyzing these games seek to identify a so-called equilibrium: that is, a set of strategies that both players can follow such that neither player would want to change their own play, given the play of their opponent. It’s called an equilibrium because it’s stable - no amount of further reflection by either player will bring them to different choices. I’m content with my strategy, given yours, and you’re content with your strategy, given mine." (Brian Christian & Thomas L Griffiths, "Algorithms to Live By: The Computer Science of Human Decisions", 2016)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.