13 November 2018

Data Science: Training Data (Just the Quotes)

"Neural networks are a computing technology whose fundamental purpose is to recognize patterns in data. Based on a computing model similar to the underlying structure of the human brain, neural networks share the brains ability to learn or adapt in response to external inputs. When exposed to a stream of training data, neural networks can discover previously unknown relationships and learn complex nonlinear mappings in the data. Neural networks provide some fundamental, new capabilities for processing business data. However, tapping these new neural network data mining functions requires a completely different application development process from traditional programming." (Joseph P Bigus, "Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"[…] an obvious difference between our best classifiers and human learning is the number of examples required in tasks such as object detection. […] the difficulty of a learning task depends on the size of the required hypothesis space. This complexity determines in turn how many training examples are needed to achieve a given level of generalization error. Thus the complexity of the hypothesis space sets the speed limit and the sample complexity for learning." (Tomaso Poggio & Steve Smale, "The Mathematics of Learning: Dealing with Data", Notices of the AMS, 2003)

"Learning a complicated function that matches the training data closely but fails to recognize the underlying process that generates the data. As a result of overfitting, the model performs poor on new input. Overfitting occurs when the training patterns are sparse in input space and/or the trained networks are too complex." (Frank Padberg, "Counting the Hidden Defects in Software Documents", 2010)

"Overfitting occurs when a formula describes a set of data very closely, but does not lead to any sensible explanation for the behavior of the data and does not predict the behavior of comparable data sets. In the case of overfitting, the formula is said to describe the noise of the system rather than the characteristic behavior of the system. Overfitting occurs frequently with models that perform iterative approximations on training data, coming closer and closer to the training data set with each iteration. Neural networks are an example of a data modeling strategy that is prone to overfitting." (Jules H Berman, "Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information", 2013)

"Briefly speaking, to solve a Machine Learning problem means you optimize a model to fit all the data from your training set, and then you use the model to predict the results you want. Therefore, evaluating a model need to see how well it can be used to predict the data out of the training set. Usually there are three types of the models: underfitting, fair and overfitting model [...]. If we want to predict a value, both (a) and (c) in this figure cannot work well. The underfitting model does not capture the structure of the problem at all, and we say it has high bias. The overfitting model tries to fit every sample in the training set and it did it, but we say it is of high variance. In other words, it fails to generalize new data." (Shudong Hao, "A Beginner’s Tutorial for Machine Learning Beginners", 2014)

"Neural networks can model very complex patterns and decision boundaries in the data and, as such, are very powerful. In fact, they are so powerful that they can even model the noise in the training data, which is something that definitely should be avoided. One way to avoid this overfitting is by using a validation set in a similar way as with decision trees.[...] Another scheme to prevent a neural network from overfitting is weight regularization, whereby the idea is to keep the weights small in absolute sense because otherwise they may be fitting the noise in the data. This is then implemented by adding a weight size term (e.g., Euclidean norm) to the objective function of the neural network." (Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications", 2014)

"A predictive model overfits the training set when at least some of the predictions it returns are based on spurious patterns present in the training data used to induce the model. Overfitting happens for a number of reasons, including sampling variance and noise in the training set. The problem of overfitting can affect any machine learning algorithm; however, the fact that decision tree induction algorithms work by recursively splitting the training data means that they have a natural tendency to segregate noisy instances and to create leaf nodes around these instances. Consequently, decision trees overfit by splitting the data on irrelevant features that only appear relevant due to noise or sampling variance in the training data. The likelihood of overfitting occurring increases as a tree gets deeper because the resulting predictions are based on smaller and smaller subsets as the dataset is partitioned after each feature test in the path." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Cross-validation is a method of splitting all of your data into two parts: training and validation. The training data is used to build the machine learning model, whereas the validation data is used to validate that the model is doing what is expected. This increases our ability to find and determine the underlying errors in a model." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"Tree pruning identifies and removes subtrees within a decision tree that are likely to be due to noise and sample variance in the training set used to induce it. In cases where a subtree is deemed to be overfitting, pruning the subtree means replacing the subtree with a leaf node that makes a prediction based on the majority target feature level (or average target feature value) of the dataset created by merging the instances from all the leaf nodes in the subtree. Obviously, pruning will result in decision trees being created that are not consistent with the training set used to build them. In general, however, we are more interested in creating prediction models that generalize well to new data rather than that are strictly consistent with training data, so it is common to sacrifice consistency for generalization capacity." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"When memorization happens, you may have the illusion that everything is working well because your machine learning algorithm seems to have fitted the in sample data so well. Instead, problems can quickly become evident when you start having it work with out-of-sample data and you notice that it produces errors in its predictions as well as errors that actually change a lot when you relearn from the same data with a slightly different approach. Overfitting occurs when your algorithm has learned too much from your data, up to the point of mapping curve shapes and rules that do not exist [...]. Any slight change in the procedure or in the training data produces erratic predictions." (John P Mueller & Luca Massaron, "Machine Learning for Dummies", 2016)

"Bias is error from incorrect assumptions built into the model, such as restricting an interpolating function to be linear instead of a higher-order curve. [...] Errors of bias produce underfit models. They do not fit the training data as tightly as possible, were they allowed the freedom to do so. In popular discourse, I associate the word 'bias' with prejudice, and the correspondence is fairly apt: an apriori assumption that one group is inferior to another will result in less accurate predictions than an unbiased one. Models that perform lousy on both training and testing data are underfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Bias occurs normally when the model is underfitted and has failed to learn enough from the training data. It is the difference between the mean of the probability distribution and the actual correct value. Hence, the accuracy of the model is different for different data sets (test and training sets). To reduce the bias error, data scientists repeat the model-building process by resampling the data to obtain better prediction values." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"Boosting defines an objective function to measure the performance of a model given a certain set of parameters. The objective function contains two parts: regularization and training loss, both of which add to one another. The training loss measures how predictive our model is on the training data. The most commonly used training loss function includes mean squared error and logistic regression. The regularization term controls the complexity of the model, which helps avoid overfitting." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"From a typical training set, many alternative decision trees can be created. As a rule, smaller trees are to be preferred, their main advantages being interpretability, removal of irrelevant and redundant attributes, and lower danger of overfitting noisy training data." (Miroslav Kubat, "An Introduction to Machine Learning" 2nd Ed., 2017)

"High-bias models typically produce simpler models that do not overfit and in those cases the danger is that of underfitting. Models with low-bias are typically more complex and that complexity enables us to represent the training data in a more accurate way. The danger here is that the flexibility provided by higher complexity may end up representing not only a relationship in the data but also the noise. Another way of portraying the bias-variance trade-off is in terms of complexity v simplicity." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017) 

"In machine learning, a model is defined as a function, and we describe the learning function from the training data as inductive learning. Generalization refers to how well the concepts are learned by the model by applying them to data not seen before. The goal of a good machine-learning model is to reduce generalization errors and thus make good predictions on data that the model has never seen." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"Multilayer perceptrons share with polynomial classifiers one unpleasant property. Theoretically speaking, they are capable of modeling any decision surface, and this makes them prone to overfitting the training data."  (Miroslav Kubat," An Introduction to Machine Learning" 2nd Ed., 2017)

"The danger of overfitting is particularly severe when the training data is not a perfect gold standard. Human class annotations are often subjective and inconsistent, leading boosting to amplify the noise at the expense of the signal. The best boosting algorithms will deal with overfitting though regularization. The goal will be to minimize the number of non-zero coefficients, and avoid large coefficients that place too much faith in any one classifier in the ensemble." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Variance is a prediction error due to different sets of training samples. Ideally, the error should not vary from one training sample to another sample, and the model should be stable enough to handle hidden variations between input and output variables. Normally this occurs with the overfitted model." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"Variance is error from sensitivity to fluctuations in the training set. If our training set contains sampling or measurement error, this noise introduces variance into the resulting model. [...] Errors of variance result in overfit models: their quest for accuracy causes them to mistake noise for signal, and they adjust so well to the training data that noise leads them astray. Models that do much better on testing data than training data are overfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"The premise of classification is simple: given a categorical target variable, learn patterns that exist between instances composed of independent variables and their relationship to the target. Because the target is given ahead of time, classification is said to be supervised machine learning because a model can be trained to minimize error between predicted and actual categories in the training data. Once a classification model is fit, it assigns categorical labels to new instances based on the patterns detected during training." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)

"The trick is to walk the line between underfitting and overfitting. An underfit model has low variance, generally making the same predictions every time, but with extremely high bias, because the model deviates from the correct answer by a significant amount. Underfitting is symptomatic of not having enough data points, or not training a complex enough model. An overfit model, on the other hand, has memorized the training data and is completely accurate on data it has seen before, but varies widely on unseen data. Neither an overfit nor underfit model is generalizable - that is, able to make meaningful predictions on unseen data." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)

"There is a trade-off between bias and variance [...]. Complexity increases with the number of features, parameters, depth, training epochs, etc. As complexity increases and the model overfits, the error on the training data decreases, but the error on test data increases, meaning that the model is less generalizable." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)

"Cross-validation is a useful tool for finding optimal predictive models, and it also works well in visualization. The concept is simple: split the data at random into a 'training' and a 'test' set, fit the model to the training data, then see how well it predicts the test data. As the model gets more complex, it will always fit the training data better and better. It will also start off getting better results on the test data, but there comes a point where the test data predictions start going wrong." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"The classifier accuracy would be extra ordinary when the test data and the training data are overlapping. But when the model is applied to a new data it will fail to show acceptable accuracy. This condition is called as overfitting." (Jesu V  Nayahi J & Gokulakrishnan K, "Medical Image Classification", 2019)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.