17 November 2018

Data Science: Decision-Making (Just the Quotes)

"There are, indeed, plenty of ways in which statistics can help in the process of decision-taking. But exaggerated claims for the role they can play merely serve to confuse rather than clarify issues of public policy, and lead those responsible for action to oscillate between over-confidence and over-scepticism in using them." (Ely Devons, "Essays in Economics", 1961)

"Statistics is a body of methods and theory applied to numerical evidence in making decisions in the face of uncertainty." (Lawrence Lapin, "Statistics for Modern Business Decisions", 1973)

"A model for simulating dynamic system behavior requires formal policy descriptions to specify how individual decisions are to be made. Flows of information are continuously converted into decisions and actions. No plea about the inadequacy of our understanding of the decision-making processes can excuse us from estimating decision-making criteria. To omit a decision point is to deny its presence - a mistake of far greater magnitude than any errors in our best estimate of the process." (Jay W Forrester, "Policies, decisions and information sources for modeling", 1994)

"The science of statistics may be described as exploring, analyzing and summarizing data; designing or choosing appropriate ways of collecting data and extracting information from them; and communicating that information. Statistics also involves constructing and testing models for describing chance phenomena. These models can be used as a basis for making inferences and drawing conclusions and, finally, perhaps for making decisions." (Fergus Daly et al, "Elements of Statistics", 1995)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Under conditions of uncertainty, both rationality and measurement are essential to decision-making. Rational people process information objectively: whatever errors they make in forecasting the future are random errors rather than the result of a stubborn bias toward either optimism or pessimism. They respond to new information on the basis of a clearly defined set of preferences. They know what they want, and they use the information in ways that support their preferences." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Delay time, the time between causes and their impacts, can highly influence systems. Yet the concept of delayed effect is often missed in our impatient society, and when it is recognized, it’s almost always underestimated. Such oversight and devaluation can lead to poor decision making as well as poor problem solving, for decisions often have consequences that don’t show up until years later. Fortunately, mind mapping, fishbone diagrams, and creativity/brainstorming tools can be quite useful here." (Stephen G Haines, "The Manager's Pocket Guide to Strategic and Business Planning", 1998)

"Just as dynamics arise from feedback, so too all learning depends on feedback. We make decisions that alter the real world; we gather information feedback about the real world, and using the new information we revise our understanding of the world and the decisions we make to bring our perception of the state of the system closer to our goals." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Compared to traditional statistical studies, which are often hindsight, the field of data mining finds patterns and classifications that look toward and even predict the future. In summary, data mining can (1) provide a more complete understanding of data by finding patterns previously not seen and (2) make models that predict, thus enabling people to make better decisions, take action, and therefore mold future events." (Robert Nisbet et al, "Handbook of statistical analysis and data mining applications", 2009)

"What is so unconventional about the statistical way of thinking? First, statisticians do not care much for the popular concept of the statistical average; instead, they fixate on any deviation from the average. They worry about how large these variations are, how frequently they occur, and why they exist. [...] Second, variability does not need to be explained by reasonable causes, despite our natural desire for a rational explanation of everything; statisticians are frequently just as happy to pore over patterns of correlation. [...] Third, statisticians are constantly looking out for missed nuances: a statistical average for all groups may well hide vital differences that exist between these groups. Ignoring group differences when they are present frequently portends inequitable treatment. [...] Fourth, decisions based on statistics can be calibrated to strike a balance between two types of errors. Predictably, decision makers have an incentive to focus exclusively on minimizing any mistake that could bring about public humiliation, but statisticians point out that because of this bias, their decisions will aggravate other errors, which are unnoticed but serious. [...] Finally, statisticians follow a specific protocol known as statistical testing when deciding whether the evidence fits the crime, so to speak. Unlike some of us, they don’t believe in miracles. In other words, if the most unusual coincidence must be contrived to explain the inexplicable, they prefer leaving the crime unsolved." (Kaiser Fung, "Numbers Rule the World", 2010)

"Statistics is the scientific discipline that provides methods to help us make sense of data. […] The field of statistics teaches us how to make intelligent judgments and informed decisions in the presence of uncertainty and variation." (Roxy Peck & Jay L Devore, "Statistics: The Exploration and Analysis of Data" 7th Ed, 2012)

"There is convincing evidence that data-driven decision-making and big data technologies substantially improve business performance. Data science supports data-driven decision-making - and sometimes conducts such decision-making automatically - and depends upon technologies for 'big data' storage and engineering, but its principles are separate." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"A study that leaves out data is waving a big red flag. A decision to include or exclude data sometimes makes all the difference in the world. This decision should be based on the relevance and quality of the data, not on whether the data support or undermine a conclusion that is expected or desired." (Gary Smith, "Standard Deviations", 2014)

"It is important to remember that predictive data analytics models built using machine learning techniques are tools that we can use to help make better decisions within an organization and are not an end in themselves. It is paramount that, when tasked with creating a predictive model, we fully understand the business problem that this model is being constructed to address and ensure that it does address it." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"Big data is, in a nutshell, large amounts of data that can be gathered up and analyzed to determine whether any patterns emerge and to make better decisions." (Daniel Covington, Analytics: Data Science, Data Analysis and Predictive Analytics for Business, 2016)

"Machine learning is often associated with the automation of decision making, but in practice, the process of constructing a predictive model generally requires a human in the loop. While computers are good at fast, accurate numerical computation, humans are instinctively and instantly able to identify patterns. The bridge between these two necessary skill sets lies in visualization - the precise and accurate rendering of data by a computer in visual terms and the immediate assignation of meaning to that data by humans." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)

"The goal of data science is to improve decision making by basing decisions on insights extracted from large data sets. As a field of activity, data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting nonobvious and useful patterns from large data sets. It is closely related to the fields of data mining and machine learning, but it is broader in scope." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Ideally, a decision maker or a forecaster will combine the outside view and the inside view - or, similarly, statistics plus personal experience. But it’s much better to start with the statistical view, the outside view, and then modify it in the light of personal experience than it is to go the other way around. If you start with the inside view you have no real frame of reference, no sense of scale - and can easily come up with a probability that is ten times too large, or ten times too small." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Our machines are helpers, not decision makers. Their insights are not the final word in the discussion, merely the work of our most nimble observers who can ramp up time spent on analysis by factors that our counterparts even a generation ago would have a hard time believing." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.