07 November 2018

🔭Data Science: Belief (Just the Quotes)

"By degree of probability we really mean, or ought to mean, degree of belief [...] Probability then, refers to and implies belief, more or less, and belief is but another name for imperfect knowledge, or it may be, expresses the mind in a state of imperfect knowledge." (Augustus De Morgan, "Formal Logic: Or, The Calculus of Inference, Necessary and Probable", 1847)

"To a scientist a theory is something to be tested. He seeks not to defend his beliefs, but to improve them. He is, above everything else, an expert at ‘changing his mind’." (Wendell Johnson, 1946)

"A model can not be proved to be correct; at best it can only be found to be reasonably consistant and not to contradict some of our beliefs of what reality is." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"Probability is not about the odds, but about the belief in the existence of an alternative outcome, cause, or motive." (Nassim N Taleb, "Fooled by Randomness", 2001)

"The Bayesian approach is based on the following postulates: (B1) Probability describes degree of belief, not limiting frequency. As such, we can make probability statements about lots of things, not just data which are subject to random variation. […] (B2) We can make probability statements about parameters, even though they are fixed constants. (B3) We make inferences about a parameter θ by producing a probability distribution for θ. Inferences, such as point estimates and interval estimates, may then be extracted from this distribution." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"The important thing is to understand that frequentist and Bayesian methods are answering different questions. To combine prior beliefs with data in a principled way, use Bayesian inference. To construct procedures with guaranteed long run performance, such as confidence intervals, use frequentist methods. Generally, Bayesian methods run into problems when the parameter space is high dimensional." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Our inner weighing of evidence is not a careful mathematical calculation resulting in a probabilistic estimate of truth, but more like a whirlpool blending of the objective and the personal. The result is a set of beliefs - both conscious and unconscious - that guide us in interpreting all the events of our lives." (Leonard Mlodinow, "War of the Worldviews: Where Science and Spirituality Meet - and Do Not", 2011)

"The search for better numbers, like the quest for new technologies to improve our lives, is certainly worthwhile. But the belief that a few simple numbers, a few basic averages, can capture the multifaceted nature of national and global economic systems is a myth. Rather than seeking new simple numbers to replace our old simple numbers, we need to tap into both the power of our information age and our ability to construct our own maps of the world to answer the questions we need answering." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"One kind of probability - classic probability - is based on the idea of symmetry and equal likelihood […] In the classic case, we know the parameters of the system and thus can calculate the probabilities for the events each system will generate. […] A second kind of probability arises because in daily life we often want to know something about the likelihood of other events occurring […]. In this second case, we need to estimate the parameters of the system because we don’t know what those parameters are. […] A third kind of probability differs from these first two because it’s not obtained from an experiment or a replicable event - rather, it expresses an opinion or degree of belief about how likely a particular event is to occur. This is called subjective probability […]." (Daniel J Levitin, "Weaponized Lies", 2017)

"Bayesian statistics give us an objective way of combining the observed evidence with our prior knowledge (or subjective belief) to obtain a revised belief and hence a revised prediction of the outcome of the coin’s next toss. [...] This is perhaps the most important role of Bayes’s rule in statistics: we can estimate the conditional probability directly in one direction, for which our judgment is more reliable, and use mathematics to derive the conditional probability in the other direction, for which our judgment is rather hazy. The equation also plays this role in Bayesian networks; we tell the computer the forward  probabilities, and the computer tells us the inverse probabilities when needed." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"The transparency of Bayesian networks distinguishes them from most other approaches to machine learning, which tend to produce inscrutable 'black boxes'. In a Bayesian network you can follow every step and understand how and why each piece of evidence changed the network’s beliefs." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.