18 November 2018

🔭Data Science: Normality (Just the Quotes)

"Logging size transforms the original skewed distribution into a more symmetrical one by pulling in the long right tail of the distribution toward the mean. The short left tail is, in addition, stretched. The shift toward symmetrical distribution produced by the log transform is not, of course, merely for convenience. Symmetrical distributions, especially those that resemble the normal distribution, fulfill statistical assumptions that form the basis of statistical significance testing in the regression model." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"When the statistician looks at the outside world, he cannot, for example, rely on finding errors that are independently and identically distributed in approximately normal distributions. In particular, most economic and business data are collected serially and can be expected, therefore, to be heavily serially dependent. So is much of the data collected from the automatic instruments which are becoming so common in laboratories these days. Analysis of such data, using procedures such as standard regression analysis which assume independence, can lead to gross error. Furthermore, the possibility of contamination of the error distribution by outliers is always present and has recently received much attention. More generally, real data sets, especially if they are long, usually show inhomogeneity in the mean, the variance, or both, and it is not always possible to randomize." (George E P Box, "Some Problems of Statistics and Everyday Life", Journal of the American Statistical Association, Vol. 74 (365), 1979)

"Linear regression assumes that in the population a normal distribution of error values around the predicted Y is associated with each X value, and that the dispersion of the error values for each X value is the same. The assumptions imply normal and similarly dispersed error distributions." (Fred C Pampel, "Linear Regression: A primer", 2000)

"The central limit theorem says that, under conditions almost always satisfied in the real world of experimentation, the distribution of such a linear function of errors will tend to normality as the number of its components becomes large. The tendency to normality occurs almost regardless of the individual distributions of the component errors. An important proviso is that several sources of error must make important contributions to the overall error and that no particular source of error dominate the rest." (George E P Box et al, "Statistics for Experimenters: Design, discovery, and innovation" 2nd Ed., 2005)

"Two things explain the importance of the normal distribution: (1) The central limit effect that produces a tendency for real error distributions to be 'normal like'. (2) The robustness to nonnormality of some common statistical procedures, where 'robustness' means insensitivity to deviations from theoretical normality." (George E P Box et al, "Statistics for Experimenters: Design, discovery, and innovation" 2nd Ed., 2005)

"In error analysis the so-called 'chi-squared' is a measure of the agreement between the uncorrelated internal and the external uncertainties of a measured functional relation. The simplest such relation would be time independence. Theory of the chi-squared requires that the uncertainties be normally distributed. Nevertheless, it was found that the test can be applied to most probability distributions encountered in practice." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"To fulfill the requirements of the theory underlying uncertainties, variables with random uncertainties must be independent of each other and identically distributed. In the limiting case of an infinite number of such variables, these are called normally distributed. However, one usually speaks of normally distributed variables even if their number is finite." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"[…] the Central Limit Theorem says that if we take any sequence of small independent random quantities, then in the limit their sum (or average) will be distributed according to the normal distribution. In other words, any quantity that can be viewed as the sum of many small independent random effects. will be well approximated by the normal distribution. Thus, for example, if one performs repeated measurements of a fixed physical quantity, and if the variations in the measurements across trials are the cumulative result of many independent sources of error in each trial, then the distribution of measured values should be approximately normal." (David Easley & Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning about a Highly Connected World", 2010)

"Statistical inference is really just the marriage of two concepts that we’ve already discussed: data and probability (with a little help from the central limit theorem)." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"The central limit theorem tells us that in repeated samples, the difference between the two means will be distributed roughly as a normal distribution." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"According to the central limit theorem, it doesn’t matter what the raw data look like, the sample variance should be proportional to the number of observations and if I have enough of them, the sample mean should be normal." (Kristin H Jarman, "The Art of Data Analysis: How to answer almost any question using basic statistics", 2013)

"For a confidence interval, the central limit theorem plays a role in the reliability of the interval because the sample mean is often approximately normal even when the underlying data is not. A prediction interval has no such protection. The shape of the interval reflects the shape of the underlying distribution. It is more important to examine carefully the normality assumption by checking the residuals […].(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"When data is not normal, the reason the formulas are working is usually the central limit theorem. For large sample sizes, the formulas are producing parameter estimates that are approximately normal even when the data is not itself normal. The central limit theorem does make some assumptions and one is that the mean and variance of the population exist. Outliers in the data are evidence that these assumptions may not be true. Persistent outliers in the data, ones that are not errors and cannot be otherwise explained, suggest that the usual procedures based on the central limit theorem are not applicable.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Why are you testing your data for normality? For large sample sizes the normality tests often give a meaningful answer to a meaningless question (for small samples they give a meaningless answer to a meaningful question)." (Greg Snow, "R-Help", 2014)

"The variance, the standard deviation, mean absolute deviation, and median absolute deviation from the median are not equivalent estimates, even in the case where the data comes from a normal distribution. In fact, the standard deviation is always greater than the mean absolute deviation, which itself is greater than the median absolute deviation. Sometimes, the median absolute deviation is multiplied by a constant scaling factor (it happens to work out to 1.4826) to put MAD on the same scale as the standard deviation in the case of a normal distribution." (Peter C Bruce & Andrew G Bruce, "Statistics for Data Scientists: 50 Essential Concepts", 2016)

"At very small time scales, the motion of a particle is more like a random walk, as it gets jostled about by discrete collisions with water molecules. But virtually any random movement on small time scales will give rise to Brownian motion on large time scales, just so long as the motion is unbiased. This is because of the Central Limit Theorem, which tells us that the aggregate of many small, independent motions will be normally distributed." (Field Cady, "The Data Science Handbook", 2017)

"Theoretically, the normal distribution is most famous because many distributions converge to it, if you sample from them enough times and average the results. This applies to the binomial distribution, Poisson distribution and pretty much any other distribution you’re likely to encounter (technically, any one for which the mean and standard deviation are finite)." (Field Cady, "The Data Science Handbook", 2017)

"Many statistical procedures perform more effectively on data that are normally distributed, or at least are symmetric and not excessively kurtotic (fat-tailed), and where the mean and variance are approximately constant. Observed time series frequently require some form of transformation before they exhibit these distributional properties, for in their 'raw' form they are often asymmetric." (Terence C Mills, "Applied Time Series Analysis: A practical guide to modeling and forecasting", 2019)

"[...] the Central Limit Theorem [...] says that the distribution of sample means tends towards the form of a normal distribution with increasing sample size, almost regardless of the shape of the original data distribution." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.