15 November 2018

Data Science: Optimization (Just the Quotes)

"[...] any hope that we are smart enough to find even transiently optimum solutions to our data analysis problems is doomed to failure, and, indeed, if taken seriously, will mislead us in the allocation of effort, thus wasting both intellectual and computational effort." (John W Tukey, "Choosing Techniques for the Analysis of Data", 1981)

"In constructing a model, we always attempt to maximize its usefulness. This aim is closely connected with the relationship among three key characteristics of every systems model: complexity, credibility, and uncertainty. This relationship is not as yet fully understood. We only know that uncertainty (predictive, prescriptive, etc.) has a pivotal role in any efforts to maximize the usefulness of systems models. Although usually (but not always) undesirable when considered alone, uncertainty becomes very valuable when considered in connection to the other characteristics of systems models: in general, allowing more uncertainty tends to reduce complexity and increase credibility of the resulting model. Our challenge in systems modelling is to develop methods by which an optimal level of allowable uncertainty can be estimated for each modelling problem." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)

"[...] an algorithm’s average performance is determined by how 'aligned' it is with the underlying probability distribution over optimization problems on which it is run." (David H Wolpert & William G Macready, "No free lunch theorems for optimization", IEEE Transactions on Evolutionary Computation 1 (1), 1997)

"[...] despite the NFL theorems, algorithms can have a priori distinctions that hold even if nothing is specified concerning the optimization problems. In particular, we show that there can be 'head-to-head' minimax distinctions between a pair of algorithms, i.e., that when considering one function at a time ,a pair of algorithms may be distinguishable, even if they are not when one looks over all functions." (David H Wolpert & William G Macready, "No free lunch theorems for optimization", IEEE Transactions on Evolutionary Computation 1 (1), 1997)

"[...] if you have a general optimization involving uncertainty and very little prior knowledge, the situation is rather hopeless. Due to the NFL theorem, you cannot do any better than a blind search. Each blind search evaluation will be very expensive, with no hope of future improvement, theoretical or otherwise. And the number of performance searches required to get anywhere is simply too large. Neither time nor theoretical or technological progress are on your side. No grand optimization algorithm to end all algorithms is possible." (Yu-Chi Ho, "The no free lunch theorem and the human-machine interface", IEEE Control Systems Magazine, 1999)

"The No Free Lunch (NFL) theorem […] tells us that without any structural assumptions on an optimization problem, no algorithm can perform better on average than blind search." (Yu-Chi Ho, "The no free lunch theorem and the human-machine interface", IEEE Control Systems Magazine, 1999)

"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)

"Because No Free Lunch theorems dictate that no optimization algorithm can be considered more efficient than any other when considering all possible functions, the desired function class plays a prominent role in the model. In particular, this provides a tractable way to answer the traditionally difficult question of what algorithm is best matched to a particular class of functions. Among the benefits of the model are the ability to specify the function class in a straightforward manner, a natural way to specify noisy or dynamic functions, and a new source of insight into No Free Lunch theorems for optimization." (Christopher K Monson, "No Free Lunch, Bayesian Inference, and Utility: A Decision-Theoretic Approach to Optimization", [thesis] 2006)

"There may be no significant difference between the point of view of inferring the true structure and that of making a prediction if an infinitely large quantity of data is available or if the data are noiseless. However, in modeling based on a finite quantity of real data, there is a significant gap between these two points of view, because an optimal model for prediction purposes may be different from one obtained by estimating the 'true model'." (Genshiro Kitagawa & Sadanori Konis, "Information Criteria and Statistical Modeling", 2007)

"A priori, it is clear that no method will always be the best [...]. However, it is reasonable to argue that each method will have a set of functions, a type of data, and a range of sample sizes for which it is optimal – a sort of catchment region for each procedure. Ideally, one could partition a space of regression problems into catchment regions, depending on which methods were under consideration, and determine which catchment region seemed most appropriate for each method. This ideal solution would amount to a selection principle for nonparametric methods. Unfortunately, it is unclear how to do this, not least because the catchment regions are unknown." (Bertrand Clarke et al, "Principles and Theory for Data Mining and Machine Learning", 2009)

"When generating trees, it is usually optimal to grow a larger tree than is justifiable and then prune it back. The main reason this works well is that stop splitting rules do not look far enough forward. That is, stop splitting rules tend to underfit, meaning that even if a rule stops at a split for which the next candidate splits give little improvement, it may be that splitting them one layer further will give a large improvement in accuracy." (Bertrand Clarke et al, "Principles and Theory for Data Mining and Machine Learning", 2009)

"The problem of comparing classifiers is not at all an easy task. There is no single classifier that works best on all given problems, phenomenon related to the 'No-free-lunch' metaphor, i.e., each classifier (’restaurant’) provides a specific technique associated with the corresponding costs (’menu’ and ’price’ for it). It is hence up to us, using the information and knowledge at hand, to find the optimal trade-off." (Florin Gorunescu, "Data Mining Concepts, Models and Techniques", 2011)

"In an emergency, a data product that just produces more data is of little use. Data scientists now have the predictive tools to build products that increase the common good, but they need to be aware that building the models is not enough if they do not also produce optimized, implementable outcomes." (Jeremy Howard et al, "Designing Great Data Products", 2012)

"Briefly speaking, to solve a Machine Learning problem means you optimize a model to fit all the data from your training set, and then you use the model to predict the results you want. Therefore, evaluating a model need to see how well it can be used to predict the data out of the training set. Usually there are three types of the models: underfitting, fair and overfitting model [...]. If we want to predict a value, both (a) and (c) in this figure cannot work well. The underfitting model does not capture the structure of the problem at all, and we say it has high bias. The overfitting model tries to fit every sample in the training set and it did it, but we say it is of high variance. In other words, it fails to generalize new data." (Shudong Hao, "A Beginner’s Tutorial for Machine Learning Beginners", 2014)

"Deep learning is an area of machine learning that emerged from the intersection of neural networks, artificial intelligence, graphical modeling, optimization, pattern recognition and signal processing." (N D Lewis, "Deep Learning Made Easy with R: A Gentle Introduction for Data Science", 2016)

"Optimization is more than finding the best simulation results. It is itself a complex and evolving field that, subject to certain information constraints, allows data scientists, statisticians, engineers, and traders alike to perform reality checks on modeling results." (Chris Conlan, "Automated Trading with R: Quantitative Research and Platform Development", 2016)

"Data scientists should have some domain expertise. Most data science projects begin with a real-world, domain-specific problem and the need to design a data-driven solution to this problem. As a result, it is important for a data scientist to have enough domain expertise that they understand the problem, why it is important, and how a data science solution to the problem might fit into an organization’s processes. This domain expertise guides the data scientist as she works toward identifying an optimized solution." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Optimization is the process of finding the maximum or minimum of a given function (also known as a fitness function), by calculating the best values for its variables (also known as a 'solution'). Despite the simplicity of this definition, it is not an easy process; often involves restrictions, as well as complex relationships among the various variables. Even though some functions can be optimized using some mathematical process, most functions we encounter in data science are not as simple, requiring a more advanced technique." (Yunus E Bulut & Zacharias Voulgaris, "AI for Data Science: Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond", 2018)

"Optimization systems (or optimizers, as they are often referred to) aim to optimize in a systematic way, oftentimes using a heuristics-based approach. Such an approach enables the AI system to use a macro level concept as part of its low-level calculations, accelerating the whole process and making it more light-weight. After all, most of these systems are designed with scalability in mind, so the heuristic approach is most practical." (Yunus E Bulut & Zacharias Voulgaris, "AI for Data Science: Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond", 2018)

"The no free lunch theorems set limits on the range of optimality of any method. That is, each methodology has a ‘catchment area’ where it is optimal or nearly so. Often, intuitively, if the optimality is particularly strong then the effectiveness of the methodology falls off more quickly outside its catchment area than if its optimality were not so strong. Boosting is a case in point: it seems so well suited to binary classification that efforts to date to extend it to give effective classification (or regression) more generally have not been very successful. Overall, it remains to characterize the catchment areas where each class of predictors performs optimally, performs generally well, or breaks down." (Bertrand S Clarke & Jennifer L. Clarke, "Predictive Statistics: Analysis and Inference beyond Models", 2018)

"Cross-validation is a useful tool for finding optimal predictive models, and it also works well in visualization. The concept is simple: split the data at random into a 'training' and a 'test' set, fit the model to the training data, then see how well it predicts the test data. As the model gets more complex, it will always fit the training data better and better. It will also start off getting better results on the test data, but there comes a point where the test data predictions start going wrong." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Random forests are essentially an ensemble of trees. They use many short trees, fitted to multiple samples of the data, and the predictions are averaged for each observation. This helps to get around a problem that trees, and many other machine learning techniques, are not guaranteed to find optimal models, in the way that linear regression is. They do a very challenging job of fitting non-linear predictions over many variables, even sometimes when there are more variables than there are observations. To do that, they have to employ 'greedy algorithms', which find a reasonably good model but not necessarily the very best model possible." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.