21 November 2018

🔭Data Science: Decision Trees (Just the Quotes)

"A good way to evaluate a model is to look at a visual representation of it. After all, what is easier to understand - a table full of mathematical relationships or a graphic displaying a decision tree with all of its splits and branches?" (Seth Paul et al. "Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis", 2002)

"When generating trees, it is usually optimal to grow a larger tree than is justifiable and then prune it back. The main reason this works well is that stop splitting rules do not look far enough forward. That is, stop splitting rules tend to underfit, meaning that even if a rule stops at a split for which the next candidate splits give little improvement, it may be that splitting them one layer further will give a large improvement in accuracy." (Bertrand Clarke et al, "Principles and Theory for Data Mining and Machine Learning", 2009)

"A predictive model overfits the training set when at least some of the predictions it returns are based on spurious patterns present in the training data used to induce the model. Overfitting happens for a number of reasons, including sampling variance and noise in the training set. The problem of overfitting can affect any machine learning algorithm; however, the fact that decision tree induction algorithms work by recursively splitting the training data means that they have a natural tendency to segregate noisy instances and to create leaf nodes around these instances. Consequently, decision trees overfit by splitting the data on irrelevant features that only appear relevant due to noise or sampling variance in the training data. The likelihood of overfitting occurring increases as a tree gets deeper because the resulting predictions are based on smaller and smaller subsets as the dataset is partitioned after each feature test in the path." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Decision trees are also discriminative models. Decision trees are induced by recursively partitioning the feature space into regions belonging to the different classes, and consequently they define a decision boundary by aggregating the neighboring regions belonging to the same class. Decision tree model ensembles based on bagging and boosting are also discriminative models." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Decision trees are also considered nonparametric models. The reason for this is that when we train a decision tree from data, we do not assume a fixed set of parameters prior to training that define the tree. Instead, the tree branching and the depth of the tree are related to the complexity of the dataset it is trained on. If new instances were added to the dataset and we rebuilt the tree, it is likely that we would end up with a (potentially very) different tree." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Decision trees are considered a good predictive model to start with, and have many advantages. Interpretability, variable selection, variable interaction, and the flexibility to choose the level of complexity for a decision tree all come into play." (Ralph Winters, "Practical Predictive Analytics", 2017)

"Decision trees are important for a few reasons. First, they can both classify and regress. It requires literally one line of code to switch between the two models just described, from a classification to a regression. Second, they are able to determine and share the feature importance of a given training set." (Russell Jurney, "Agile Data Science 2.0: Building Full-Stack Data Analytics Applications with Spark", 2017)

 "The main reason why pruning tends to improve classification performance on future examples is that the removal of low-level tests, which have poor statistical support, usually reduces the danger of overfitting. This, however, works only up to a certain point. If overdone, a very high extent of pruning can (in the extreme) result in the decision being replaced with a single leaf labeled with the majority class." (Miroslav Kubat," An Introduction to Machine Learning" 2nd Ed., 2017)

"From a typical training set, many alternative decision trees can be created. As a rule, smaller trees are to be preferred, their main advantages being interpretability, removal of irrelevant and redundant attributes, and lower danger of overfitting noisy training data." (Miroslav Kubat, "An Introduction to Machine Learning" 2nd Ed., 2017)

"An advantage of random forests is that it works with both regression and classification trees so it can be used with targets whose role is binary, nominal, or interval. They are also less prone to overfitting than a single decision tree model. A disadvantage of a random forest is that they generally require more trees to improve their accuracy. This can result in increased run times, particularly when using very large data sets." (Richard V McCarthy et al, "Applying Predictive Analytics: Finding Value in Data", 2019)

"Decision trees show the breakdown of the data by one variable then another in a very intuitive way, though they are generally just diagrams that don’t actually encode data visually." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Random forests are essentially an ensemble of trees. They use many short trees, fitted to multiple samples of the data, and the predictions are averaged for each observation. This helps to get around a problem that trees, and many other machine learning techniques, are not guaranteed to find optimal models, in the way that linear regression is. They do a very challenging job of fitting non-linear predictions over many variables, even sometimes when there are more variables than there are observations. To do that, they have to employ 'greedy algorithms', which find a reasonably good model but not necessarily the very best model possible." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.