30 July 2025

📊Graphical Representation: Sense-making in Data Visualizations (Part 3: Heuristics)

Graphical Representation Series
Graphical Representation Series
 

Consider the following general heuristics in data visualizations (work in progress):

  • plan design
    • plan page composition
      • text
        • title, subtitles
        • dates 
          • refresh, filters applied
        • parameters applied
        • guidelines/tooltips
        • annotation 
      • navigation
        • main page(s)
        • additional views
        • drill-through
        • zoom in/out
        • next/previous page
        • landing page
      • slicers/selections
        • date-related
          • date range
          • date granularity
        • functional
          • metric
          • comparisons
        • categorical
          • structural relations
      • icons/images
        • company logo
        • button icons
        • background
    • pick a theme
      • choose a layout and color schema
        • use a color palette generator
        • use a focused color schema or restricted palette
        • use consistent and limited color scheme
        • use suggestive icons
          • use one source (with similar design)
        • use formatting standards
    • create a visual hierarchy 
      • use placement, size and color for emphasis
      • organize content around eye movement pattern
      • minimize formatting changes
      • 1 font, 2 weights, 4 sizes
    • plan the design
      • build/use predictable and consistent templates
        • e.g. using Figma
      • use layered design
      • aim for design unity
      • define & use formatting standards
      • check changes
    • GRACEFUL
      • group visuals with white space 
      • right chart type
      • avoid clutter
      • consistent & limited color schema
      • enhanced readability 
      • formatting standard
      • unity of design
      • layered design
  • keep it simple 
    • be predictable and consistent 
    • focus on the message
      • identify the core insights and design around them
      • pick suggestive titles/subtitles
        • use dynamics subtitles
      • align content with the message
    • avoid unnecessary complexity
      • minimize visual clutter
      • remove the unnecessary elements
      • round numbers
    • limit colors and fonts
      • use a restrained color palette (<5 colors)
      • stick to 1-2 fonts 
      • ensure text is legible without zooming
    • aggregate values
      • group similar data points to reduce noise
      • use statistical methods
        • averages, medians, min/max
      • categories when detailed granularity isn’t necessary
    • highlight what matters 
      • e.g. actionable items
      • guide attention to key areas
        • via annotations, arrows, contrasting colors 
        • use conditional formatting
      • do not show only the metrics
        • give context 
      • show trends
        • via sparklines and similar visuals
    • use familiar visuals
      • avoid questionable visuals 
        • e.g. pie charts, gauges
    • avoid distortions
      • preserve proportions
        • scale accurately to reflect data values
        • avoid exaggerated visuals
          • don’t zoom in on axes to dramatize small differences
      • use consistent axes
        • compare data using the same scale and units across charts
        • don't use dual axes or shifting baselines that can mislead viewers
      • avoid manipulative scaling
        • use zero-baseline on bar charts 
        • use logarithmic scales sparingly
    • design for usability
      • intuitive interaction
      • at-a-glance perception
      • use contrast for clarity
      • use familiar patterns
        • use consistent formats the audience already knows
    • design with the audience in mind
      • analytical vs managerial perspectives (e.g. dashboards)
    • use different level of data aggregations
      •  in-depth data exploration 
    • encourage scrutiny
      • give users enough context to assess accuracy
        • provide raw values or links to the source
      • explain anomalies, outliers or notable trends
        • via annotations
    • group related items together
      • helps identify and focus on patterns and other relationships
    • diversify 
      • don't use only one chart type
      • pick the chart that reflects the best the data in the conrext considered
    • show variance 
      • absolute vs relative variance
      • compare data series
      • show contribution to variance
    • use familiar encodings
      • leverage (known) design patterns
    • use intuitive navigation
      • synchronize slicers
    • use tooltips
      • be concise
      • use hover effects
    • use information buttons
      • enhances user interaction and understanding 
        • by providing additional context, asking questions
    • use the full available surface
      • 1080x1920 works usually better 
    • keep standards in mind 
      • e.g. IBCS
  • state the assumptions
    • be explicit
      • clearly state each assumption 
        • instead of leaving it implied
    • contextualize assumptions
      • explain the assumption
        • use evidence, standard practices, or constraints
    • state scope and limitations
      • mention what the assumption includes and excludes
    • tie assumptions to goals & objectives
      • helps to clarify what underlying beliefs are shaping the analysis
      • helps identify whether the visualization achieves its intended purpose 
  • show the data
    • be honest (aka preserve integrity)
      • avoid distortion, bias, or trickery
    • support interpretation
      • provide labels, axes, legends
    • emphasize what's meaningful
      • patterns, trends, outliers, correlations, local/global maxima/minima
  • show what's important 
    • e.g. facts, relationships, flow, similarities, differences, outliers, unknown
    • prioritize and structure the content
      • e.g. show first an overview, what's important
    • make the invisible visible
      • think about what we do not see
    • know your (extended) users/audience
      • who'll use the content, at what level, for that
  • test for readability
    • get (early) feedback
      • have the content reviewed first
        • via peer review, dry run presentation
  • tell the story
    • know the audience and its needs
    • build momentum, expectation
    • don't leave the audience to figure it out
    • show the facts
    • build a narrative
      • show data that support it
      • arrange the visuals in a logical sequence
    • engage the reader
      • ask questions that bridge the gaps
        • e.g. in knowledge, in presentation's flow
      • show the unexpected
      • confirm logical deductions
Previous Post <<||>> Next Post

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.