Business Intelligence Series |
Products
Products or technology perspective has within BI context a dual nature. First of all we have to consider the BI infrastructure – the whole set of BI tools we have at disposal for our shiny reports. Secondly, because the BI infrastructure doesn’t stand on itself, we have to consider also IT infrastructure on which BI infrastructure is based upon – a full range of ISs (Information Systems) in which data are entered, processed, transported and consumed before they are used by the BI tools. For Data Quality issues, we often have to consider the broader perspective, and tackle the problems at the source. Otherwise we might arrive to treat the symptoms and not the causes. It’s important to note that the two layers or perspectives are interconnected, the consequences being bidirectional.
A typical BI infrastructure revolves around several databases, maybe one or more data warehouses and data marts, and one or more reporting systems. Within the most basic scenario, the data flow is unidirectional from databases to data warehouse/marts, reports being built on top of the data warehouse/marts or directly on the IS’ databases. In more complex scenarios, the data can flow between the various ISs when they were integrated, and even between data warehouses/marts, within a unidirectional or bidirectional flow. Unless the reports are based directly on the ISs’ databases, such architectures lead to data duplication, conversions between complex schemas, delays between the various layers, to mention just a few of the most important implications. In some point in time the complexity falls down on you.
One of the problems I met is that a considerable percent of the IS are not developed to address BI requirements. It starts with data validation, with the way data are modeled, structured, formatted and made available for BI consumption. If you want to increase the quality of your data, you have sooner or later to address them. It’s important thus the degree to which the systems are designed to cover the BI needs in particular, and decision making in general. This presumes that BI requirements need to be addressed in early phases of implementations, software design or when tools are consider for purchase.
In addition many ISs come with their own (standard) reports or reporting frameworks, becoming thus part of your BI infrastructure, intended or unintended. Even if such reports are intended to cover basic immediate reporting requirements, they not always so easy to consume, the logic behind them is not visible, are hard to extend, are not always tested, the additional reports built in other tools need to be synchronized with them, etc.
Partners
We gather huge volumes of data, we are drowning in it; we want to take decision rooted in data and get visibility into the past, actual and future state of business. How can we achieve that if we don’t have the knowledge and human resources to achieve that? “Partners” is the magic word – external suppliers specialized, in theory, to provide this kind of services: BI analysts and developers, business analysts, data miners, and other IT professionals work together in order to build your BI infrastructure. One detail many people forget is that BI tools provide potentiality; are the skills and knowledge of those working with them that transforms that potentiality into success. On their capabilities depends the success of such projects. Not to forget that BI projects are similar to other IT projects, falling under same type of fallacies plus a few other fallacies of their own derived from exploratory and complex nature of BI projects.
There is a dual nature also in “partners” perspective – except the external perspective which concerns the external partners and the IT department or the business as a whole, there is also the internal perspective in which the IT department plays again a central role. I heard it often loudly affirmed that the other departments are customers of the IT department, or the reciprocal. I have seen also this conception brought to extreme, in which the IT had no word to say in what concerns the IT infrastructure in general, respectively the BI infrastructure in particular. As long the IT department isn’t treated as a business partner, an organization will be more likely sabotaged from inside. Sabotage it’s a word too strong maybe, though it kind of reflects the state of art.
People
Same as partners, people perspective includes a considerable variety of types: IT staff, executives, managers, end-users and other types of stakeholders, each of them with a word to say, grouped in various groups of interests that don’t always converge, situations in which politics plays a major role. It’s actually interesting to see how the decision for a given BI solution is made, how the solution takes its place into the landscape, how it’s used and misused, how personalities and knowledge harness it or stand in the way. I feel that there are organizations (people) which do BI just for the sake of doing something, copying sometimes recipes of success, without uniting the dots, without clear goals and strategy. There are people who juggle with numbers and BI concepts without knowing their meaning and what they involve. This aspect is reflected in how BI tools are selected, implemented and used.
Having the best tools, consultants and highest data quality, won’t guarantee the success of BI initiative without users’ acceptance, without teaching them how to make constructive use of tools and data, on how to use and built models in order to solve the problems the business is confronted with, on how to address strategic, tactical and operational requirements. The transformation from a robot to a knowledge worker doesn’t happen over night. Is needed to make people aware of the various aspects of BI – data quality, process and data ownership, on how models can be used and misused, on how models evolve or become obsolete, how the BI infrastructure has to evolve with the business’ dynamics. There are so many aspects that need to be considered. It’s a continuous learning process.
Processes
A typical BI infrastructure revolves around several databases, maybe one or more data warehouses and data marts, and one or more reporting systems. Within the most basic scenario, the data flow is unidirectional from databases to data warehouse/marts, reports being built on top of the data warehouse/marts or directly on the IS’ databases. In more complex scenarios, the data can flow between the various ISs when they were integrated, and even between data warehouses/marts, within a unidirectional or bidirectional flow. Unless the reports are based directly on the ISs’ databases, such architectures lead to data duplication, conversions between complex schemas, delays between the various layers, to mention just a few of the most important implications. In some point in time the complexity falls down on you.
One of the problems I met is that a considerable percent of the IS are not developed to address BI requirements. It starts with data validation, with the way data are modeled, structured, formatted and made available for BI consumption. If you want to increase the quality of your data, you have sooner or later to address them. It’s important thus the degree to which the systems are designed to cover the BI needs in particular, and decision making in general. This presumes that BI requirements need to be addressed in early phases of implementations, software design or when tools are consider for purchase.
In addition many ISs come with their own (standard) reports or reporting frameworks, becoming thus part of your BI infrastructure, intended or unintended. Even if such reports are intended to cover basic immediate reporting requirements, they not always so easy to consume, the logic behind them is not visible, are hard to extend, are not always tested, the additional reports built in other tools need to be synchronized with them, etc.
Partners
We gather huge volumes of data, we are drowning in it; we want to take decision rooted in data and get visibility into the past, actual and future state of business. How can we achieve that if we don’t have the knowledge and human resources to achieve that? “Partners” is the magic word – external suppliers specialized, in theory, to provide this kind of services: BI analysts and developers, business analysts, data miners, and other IT professionals work together in order to build your BI infrastructure. One detail many people forget is that BI tools provide potentiality; are the skills and knowledge of those working with them that transforms that potentiality into success. On their capabilities depends the success of such projects. Not to forget that BI projects are similar to other IT projects, falling under same type of fallacies plus a few other fallacies of their own derived from exploratory and complex nature of BI projects.
There is a dual nature also in “partners” perspective – except the external perspective which concerns the external partners and the IT department or the business as a whole, there is also the internal perspective in which the IT department plays again a central role. I heard it often loudly affirmed that the other departments are customers of the IT department, or the reciprocal. I have seen also this conception brought to extreme, in which the IT had no word to say in what concerns the IT infrastructure in general, respectively the BI infrastructure in particular. As long the IT department isn’t treated as a business partner, an organization will be more likely sabotaged from inside. Sabotage it’s a word too strong maybe, though it kind of reflects the state of art.
People
Same as partners, people perspective includes a considerable variety of types: IT staff, executives, managers, end-users and other types of stakeholders, each of them with a word to say, grouped in various groups of interests that don’t always converge, situations in which politics plays a major role. It’s actually interesting to see how the decision for a given BI solution is made, how the solution takes its place into the landscape, how it’s used and misused, how personalities and knowledge harness it or stand in the way. I feel that there are organizations (people) which do BI just for the sake of doing something, copying sometimes recipes of success, without uniting the dots, without clear goals and strategy. There are people who juggle with numbers and BI concepts without knowing their meaning and what they involve. This aspect is reflected in how BI tools are selected, implemented and used.
Having the best tools, consultants and highest data quality, won’t guarantee the success of BI initiative without users’ acceptance, without teaching them how to make constructive use of tools and data, on how to use and built models in order to solve the problems the business is confronted with, on how to address strategic, tactical and operational requirements. The transformation from a robot to a knowledge worker doesn’t happen over night. Is needed to make people aware of the various aspects of BI – data quality, process and data ownership, on how models can be used and misused, on how models evolve or become obsolete, how the BI infrastructure has to evolve with the business’ dynamics. There are so many aspects that need to be considered. It’s a continuous learning process.
Processes
In processes' perspective can be depicted a dual nature too. First of all we have to consider the processes which are used to manage efficiently and effectively the whole BI infrastructure. They are widely discussed in various methodologies like ITIL, whose implementation is thoroughly documented. Secondly, it’s the reflection of departmental processes within the various data perspectives – how they are measured, and how the measurements are further used for continuous improvement.
Considering that this aspect is correlated with an organization’s capability model, I don’t think that many organizations go/rich that far. Sure the trend is to define meaningful KPIs, growth, health and other type of metrics, but the question is – are you using those metrics constructively, are you aligning them with your strategic, tactic and operational goals? I think there is lot of potential in this, though in order to measure processes accordingly is imperative to have also the system designed for this purpose. Back to technological perspective…
Previous Post <<||>> Next Post
No comments:
Post a Comment