12 December 2018

Data Science: Theory (Just the Quotes)

"The moment a person forms a theory, his imagination sees, in every object, only the traits which favor that theory." (Thomas Jefferson, [letter to Charles Thompson] 1787)

"It is not possible to feel satisfied at having said the last word about some theory as long as it cannot be explained in a few words to any passerby encountered in the street." (Joseph D Gergonne, [letter] 1825)

"[…] in order to observe, our mind has need of some theory or other. If in contemplating phenomena we did not immediately connect them with principles, not only would it be impossible for us to combine these isolated observations, and therefore to derive profit from them, but we should even be entirely incapable of remembering facts, which would for the most remain unnoted by us." (Auguste Comte, "Cours de Philosophie Positive", 1830-1842)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"The function of theory is to put all this in systematic order, clearly and comprehensively, and to trace each action to an adequate, compelling cause. […] Theory should cast a steady light on all phenomena so that we can more easily recognize and eliminate the weeds that always spring from ignorance; it should show how one thing is related to another, and keep the important and the unimportant separate. If concepts combine of their own accord to form that nucleus of truth we call a principle, if they spontaneously compose a pattern that becomes a rule, it is the task of the theorist to make this clear." (Carl von Clausewitz, "On War", 1832)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"Theories usually result from the precipitate reasoning of an impatient mind which would like to be rid of phenomena and replace them with images, concepts, indeed often with mere words." (Johann Wolfgang von Goethe, "Maxims and Reflections", 1833)

"Every detection of what is false directs us towards what is true: every trial exhausts some tempting form of error. Not only so; but scarcely any attempt is entirely a failure; scarcely any theory, the result of steady thought, is altogether false; no tempting form of error is without some latent charm derived from truth." (William Whewell, "Lectures on the History of Moral Philosophy in England", 1852)

"The dimmed outlines of phenomenal things all merge into one another unless we put on the focusing-glass of theory, and screw it up sometimes to one pitch of definition and sometimes to another, so as to see down into different depths through the great millstone of the world." (James C Maxwell, "Are There Real Analogies in Nature?", 1856) 

"[…] ideas may be both novel and important, and yet, if they are incorrect – if they lack the very essential support of incontrovertible fact, they are unworthy of credence. Without this, a theory may be both beautiful and grand, but must be as evanescent as it is beautiful, and as unsubstantial as it is grand." (George Brewster, "A New Philosophy of Matter", 1858)

"If an idea presents itself to us, we must not reject it simply because it does not agree with the logical deductions of a reigning theory." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"Science asks no questions about the ontological pedigree or a priori character of a theory, but is content to judge it by its performance; and it is thus that a knowledge of nature, having all the certainty which the senses are competent to inspire, has been attained - a knowledge which maintains a strict neutrality toward all philosophical systems and concerns itself not with the genesis or a priori grounds of ideas." (Chauncey Wright, "The Philosophy of Herbert Spencer", North American Review, 1865)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"The triumph of a theory is to embrace the greatest number and the greatest variety of facts." (Charles A Wurtz, "A History of Chemical Theory from the Age of Lavoisier to the Present Time", 1869)

"Mathematics is not the discoverer of laws, for it is not induction; neither is it the framer of theories, for it is not hypothesis; but it is the judge over both, and it is the arbiter to which each must refer its claims; and neither law can rule nor theory explain without the sanction of mathematics." (Benjamin Peirce, "Linear Associative Algebra", American Journal of Mathematics, Vol. 4, 1881)

"As for everything else, so for a mathematical theory: beauty can be perceived but not explained." (Arthur Cayley, [president's address] 1883)

"It would be an error to suppose that the great discoverer seizes at once upon the truth, or has any unerring method of divining it. In all probability the errors of the great mind exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must be many times as numerous as those that prove well founded. The weakest analogies, the most whimsical notions, the most apparently absurd theories, may pass through the teeming brain, and no record remain of more than the hundredth part. […] The truest theories involve suppositions which are inconceivable, and no limit can really be placed to the freedom of hypotheses." (W Stanley Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1877)

"Perfect readiness to reject a theory inconsistent with fact is a primary requisite of the philosophic mind. But it, would be a mistake to suppose that this candour has anything akin to fickleness; on the contrary, readiness to reject a false theory may be combined with a peculiar pertinacity and courage in maintaining an hypothesis as long as its falsity is not actually apparent." (William S Jevons, "The Principles of Science", 1887)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890) 

"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890) 

"Facts are not much use, considered as facts. They bewilder by their number and their apparent incoherency. Let them be digested into theory, however, and brought into mutual harmony, and it is another matter. Theory is of the essence of facts. Without theory scientific knowledge would be only worthy of the mad house." (Oliver Heaviside, "Electromagnetic Theory", 1893)

"Scientific facts accumulate rapidly, and give rise to theories with almost equal rapidity. These theories are often wonderfully enticing, and one is apt to pass from one to another, from theory to theory, without taking care to establish each before passing on to the next, without assuring oneself that the foundation on which one is building is secure. Then comes the crash; the last theory breaks down utterly, and on attempting to retrace our steps to firm ground and start anew, we may find too late that one of the cards, possibly at the very foundation of the pagoda, is either faultily placed or in itself defective, and that this blemish easily remedied if detected in time has, neglected, caused the collapse of the whole structure on whose erection so much skill and perseverance have been spent." (Arthur M Marshall, 1894)

"A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to the first man whom you meet on the street." (David Hilbert [paraphrasing Joseph D Gergonne], "Mathematical Problems", 1900)

"One does not ask whether a scientific theory is true, but only whether it is convenient." (Henri Poincaré, "La Science et l'Hypothèse", 1902) 

"But surely it is self-evident that every theory is merely a framework or scheme of concepts together with their necessary relations to one another, and that the basic elements can be constructed as one pleases." (Gottlob Frege, "On the Foundations of Geometry and Formal Theories of Arithmetic" , cca. 1903-1909)

"It [a theory] ought to furnish a compass which, if followed, will lead the observer further and further into previously unexplored regions. Whether these regions will be barren or fertile experience alone will decide; but, at any rate, one who is guided in this way will travel onward in a definite direction, and will not wander aimlessly to and fro." (Sir Joseph J Thomson, "The Corpuscular Theory of Matter", 1907)

"Things and events explain themselves, and the business of thought is to brush aside the verbal and conceptual impediments which prevent them from doing so. Start with the notion that it is you who explain the Object, and not the Object that explains itself, and you are bound to end in explaining it away. It ceases to exist, its place being taken by a parcel of concepts, a string of symbols, a form of words, and you find yourself contemplating, not the thing, but your theory of the thing." (Lawrence P Jacks, "The Usurpation Of Language", 1910)

"The existence of analogies between central features of various theories implies the existence of a general theory which underlies the particular theories and unifies them with respect to those central features." (Eliakim H Moore, "Introduction to a Form of General Analysis", 1910)

"The discovery which has been pointed to by theory is always one of profound interest and importance, but it is usually the close and crown of a long and fruitful period, whereas the discovery which comes as a puzzle and surprise usually marks a fresh epoch and opens a new chapter in science." (Sir Oliver J Lodge, [Becquerel Memorial Lecture] Journal of the Chemical Society, Transactions 101 (2), 1912) 

"There is no great harm in the theorist who makes up a new theory to fit a new event. But the theorist who starts with a false theory and then sees everything as making it come true is the most dangerous enemy of human reason." (Gilbert K Chesterton, "The Flying Inn", 1914)

"Theory is the best guide for experiment - that were it not for theory and the problems and hypotheses that come out of it, we would not know the points we wanted to verify, and hence would experiment aimlessly" (Henry Hazlitt,  "Thinking as a Science", 1916)

"As soon as science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms. We call such a system of thought a theory. The theory finds the justification for its existence in the fact that it correlates a large number of single observations, and it is just here that the 'truth' of the theory lies." (Albert Einstein: "Relativity: The Special and General Theory", 1916)

"No fairer destiny could be allotted to any physical theory, than that it should of itself point out the way to the introduction of a more comprehensive theory, in which it lives on as a limiting case." (Albert Einstein: "Relativity, The Special and General Theory", 1916)

"To come very near to a true theory, and to grasp its precise application, are two very different things, as the history of a science teaches us. Everything of importance has been said before by somebody who did not discover it." (Alfred N Whitehead, "The Organization of Thought", 1917)

"Facts are carpet-tacks under the pneumatic tires of theory." (Austin O’Malley, "Keystones of Thought", 1918)

"Philosophy, like science, consists of theories or insights arrived at as a result of systemic reflection or reasoning in regard to the data of experience. It involves, therefore, the analysis of experience and the synthesis of the results of analysis into a comprehensive or unitary conception. Philosophy seeks a totality and harmony of reasoned insight into the nature and meaning of all the principal aspects of reality." (Joseph A Leighton, "The Field of Philosophy: An outline of lectures on introduction to philosophy", 1919)

"[…] analogies are not ‘aids’ to the establishment of theories; they are an utterly essential part of theories, without which theories would be completely valueless and unworthy of the name. It is often suggested that the analogy leads to the formulation of the theory, but that once the theory is formulated the analogy has served its purpose and may be removed or forgotten. Such a suggestion is absolutely false and perniciously misleading." (Norman R Campbell, "Physics, the Elements", 1920) 

"Nothing is more interesting to the true theorist than a fact which directly contradicts a theory generally accepted up to that time, for this is his particular work." (Max Planck, "A Survey of Physics", 1925)

"[…] the mere collection of facts, without some basis of theory for guidance and elucidation, is foolish and profitless." (Gamaliel Bradford, "Darwin", 1926)

"[…] facts are too bulky to be lugged about conveniently except on the wheels of theory." (Julian Huxley, "Essays of a Biologist", 1929)

 "We can invent as many theories we like, and any one of them can be made to fit the facts. But that theory is always preferred which makes the fewest number of assumptions." (Albert Einstein [interview] 1929)

"Every theory of the course of events in nature is necessarily based on some process of simplification and is to some extent, therefore, a fairy tale." (Sir Napier Shaw, "Manual of Meteorology", 1932)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." (Albert Einstein, [lecture] 1933)

"All the theories and hypotheses of empirical science share this provisional character of being established and accepted ‘until further notice’ [...]" (Carl G Hempel, "Geometry and Empirical Science", 1935)

"[while] the traditional way is to regard the facts of science as something like the parts of a jig-saw puzzle, which can be fitted together in one and only one way, I regard them rather as the tiny pieces of a mosaic, which can be fitted together in many ways. A new theory in an old subject is, for me, a new mosaic pattern made with the pieces taken from an older pattern. [...] Theories come into fashion and theories go out of fashion, but the facts connected with them stay." (William H George, "The Scientist in Action", 1936)

"Every new theory as it arises believes in the flush of youth that it has the long sought goal; it sees no limits to its applicability, and believes that at last it is the fortunate theory to achieve the 'right' answer." (Percy W Bridgman, "The Nature of Physical Theory", 1936)

"When an active individual of sound common sense perceives the sordid state of the world, desire to change it becomes the guiding principle by which he organizes given facts and shapes them into a theory. The methods and categories as well as the transformation of the theory can be understood only in connection with his taking of sides. This, in turn, discloses both his sound common sense and the character of the world. Right thinking depends as much on right willing as right willing on right thinking." (Max Horkheimer, "The Latest Attack on Metaphysics", 1937)

"Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"With the help of physical theories we try to find our way through the maze of observed facts, to order and understand the world of our sense impressions." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"There is nothing as practical as a good theory" (Kurt Z Lewin, "Psychology and the process of group living", Journal of Social Psychology 17, 1943)

"To a scientist a theory is something to be tested. He seeks not to defend his beliefs, but to improve them. He is, above everything else, an expert at ‘changing his mind’." (Wendell Johnson, 1946)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947]) 

"We can put it down as one of the principles learned from the history of science that a theory is only overthrown by a better theory, never merely by contradictory facts." (James B Conant, "On Understanding Science", 1947)

"A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended its area of applicability." (Albert Einstein, "Autobiographical Notes", 1949)

"When a scientific theory is firmly established and confirmed, it changes its character and becomes a part of the metaphysical background of the age: a doctrine is transformed into a dogma." (Max Born, "Natural Philosophy of Cause and Chance", 1949)

"As every mathematician knows, nothing is more fruitful than these obscure analogies, these indistinct reflections of one theory into another, these furtive caresses, these inexplicable disagreements; also nothing gives the researcher greater pleasure." (André Weil, "De la Métaphysique aux Mathématiques", 1960)

"A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data. " (Paul A M Dirac, Scientific American, 1963)

"The final test of a theory is its capacity to solve the problems which originated it." (George Dantzig, "Linear Programming and Extensions", 1963)

"It is easy to obtain confirmations, or verifications, for nearly every theory - if we look for confirmations. Confirmations should count only if they are the result of risky predictions. […] A theory which is not refutable by any conceivable event is non-scientific. Irrefutability is not a virtue of a theory (as people often think) but a vice. Every genuine test of a theory is an attempt to falsify it, or refute it." (Karl R Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a way of blooming into beautiful theories." (Philip J Davis, "Number", Scientific American, No 211 (3), 1964)

"Another thing I must point out is that you cannot prove a vague theory wrong. If the guess that you make is poorly expressed and rather vague, and the method that you use for figuring out the consequences is a little vague - you are not sure, and you say, 'I think everything's right because it's all due to so and so, and such and such do this and that more or less, and I can sort of explain how this works' […] then you see that this theory is good, because it cannot be proved wrong! Also if the process of computing the consequences is indefinite, then with a little skill any experimental results can be made to look like the expected consequences." (Richard P Feynman, "The Character of Physical Law", 1965)

"This is the key of modern science and it was the beginning of the true understanding of Nature - this idea to look at the thing, to record the details, and to hope that in the information thus obtained might lie a clue to one or another theoretical interpretation." (Richard P Feynman, "The Character of Physical Law", 1965)

"Theories are usually introduced when previous study of a class of phenomena has revealed a system of uniformities. […] Theories then seek to explain those regularities and, generally, to afford a deeper and more accurate understanding of the phenomena in question. To this end, a theory construes those phenomena as manifestations of entities and processes that lie behind or beneath them, as it were." (Carl G Hempel, "Philosophy of Natural Science", 1966)

"A theory is scientific only if it can be disproved. But the moment you try to cover absolutely everything the chances are that you cover nothing. " (Sir Hermann Bondi, "Assumption and Myth in Physical Theory", 1967) 

 "As soon as we inquire into the reasons for the phenomena, we enter the domain of theory, which connects the observed phenomena and traces them back to a single ‘pure’ phenomena, thus bringing about a logical arrangement of an enormous amount of observational material." (Georg Joos, "Theoretical Physics", 1968)

"It makes no sense to say what the objects of a theory are, beyond saying how to interpret or reinterpret that theory in another." (Willard v O Quine, "Ontological Relativity and Other Essays", 1969)

"One often hears that successive theories grow ever closer to, or approximate more and more closely to, the truth. Apparently, generalizations like that refer not to the puzzle-solutions and the concrete predictions derived from a theory but rather to its ontology, to the match, that is, between the entities with which the theory populates nature and what is ‘really there’." (Thomas S Kuhn, "The Structure of Scientific Revolutions", 1970)

"Blind commitment to a theory is not an intellectual virtue: it is an intellectual crime." (Imre Lakatos, [radio Lecture] 1973) 

"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975) 

"A physical theory remains an empty shell until we have found a reasonable physical interpretation." (Peter Bergmann, [conference] 1976)

"Owing to his lack of knowledge, the ordinary man cannot attempt to resolve conflicting theories of conflicting advice into a single organized structure. He is likely to assume the information available to him is on the order of what we might think of as a few pieces of an enormous jigsaw puzzle. If a given piece fails to fit, it is not because it is fraudulent; more likely the contradictions and inconsistencies within his information are due to his lack of understanding and to the fact that he possesses only a few pieces of the puzzle. Differing statements about the nature of things […] are to be collected eagerly and be made a part of the individual's collection of puzzle pieces. Ultimately, after many lifetimes, the pieces will fit together and the individual will attain clear and certain knowledge." (Alan R Beals, "Strategies of Resort to Curers in South India" [contributed in Charles M. Leslie (ed.), "Asian Medical Systems: A Comparative Study", 1976]) 

"A good scientific law or theory is falsifiable just because it makes definite claims about the world. For the falsificationist, If follows fairly readily from this that the more falsifiable a theory is the better, in some loose sense of more. The more a theory claims, the more potential opportunities there will be for showing that the world does not in fact behave in the way laid down by the theory. A very good theory will be one that makes very wide-ranging claims about the world, and which is consequently highly falsifiable, and is one that resists falsification whenever it is put to the test." (Alan F Chalmers,  "What Is This Thing Called Science?", 1976)

"Facts do not ‘speak for themselves’; they are read in the light of theory. Creative thought, in science as much as in the arts, is the motor of changing opinion. Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin", 1977)

"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)

"The theory of our modern technic shows that nothing is as practical as the theory." (J Robert Oppenheimer, "Reflex", 1977)

"Science has so accustomed us to devising and accepting theories to account for the facts we observe, however fantastic, that our minds must begin their manufacture before we are aware of it." (Gene Wolfe, "Seven American Nights", 1978) 

"For mathematicians, only one test was necessary: once the elements of any mathematical theory were seen to be consistent, then they were mathematically acceptable. Nothing more was required." (Joseph W  Dauben, "Georg Cantor: His Mathematics and Philosophy of the Infinite", 1979)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)

"A real change of theory is not a change of equations - it is a change of mathematical structure, and only fragments of competing theories, often not very important ones conceptually, admit comparison with each other within a limited range of phenomena." (Yuri I Manin, "Mathematics and Physics", 1981)

"The principal aim of physical theories is understanding. A theory's ability to find a number is merely a useful criterion for a correct understanding." (Yuri I Manin, "Mathematics and Physics", 1981)

"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]" (George Greenstein, "Frozen Star", 1983)

"In all scientific fields, theory is frequently more important than experimental data. Scientists are generally reluctant to accept the existence of a phenomenon when they do not know how to explain it. On the other hand, they will often accept a theory that is especially plausible before there exists any data to support it." (Richard Morris, 1983) 

"Physics is like that. It is important that the models we construct allow us to draw the right conclusions about the behaviour of the phenomena and their causes. But it is not essential that the models accurately describe everything that actually happens; and in general it will not be possible for them to do so, and for much the same reasons. The requirements of the theory constrain what can be literally represented. This does not mean that the right lessons cannot be drawn. Adjustments are made where literal correctness does not matter very much in order to get the correct effects where we want them; and very often, as in the staging example, one distortion is put right by another. That is why it often seems misleading to say that a particular aspect of a model is false to reality: given the other constraints that is just the way to restore the representation." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Scientific theories must tell us both what is true in nature, and how we are to explain it. […] Scientific theories are thought to explain by dint of the descriptions they give of reality." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts based on small but profound insights; the insights themselves come from concrete special cases." (Paul Halmos, "Selecta: Expository writing", 1983)

"A final goal of any scientific theory must be the derivation of numbers. Theories stand or fall, ultimately, upon numbers." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Until now, physical theories have been regarded as merely models with approximately describe the reality of nature. As the models improve, so the fit between theory and reality gets closer. Some physicists are now claiming that supergravity is the reality, that the model and the real world are in mathematically perfect accord." (Paul C W Davies, "Superforce", 1984)

"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985) 

"Experience without theory teaches nothing." (William E Deming, "Out of the Crisis", 1986)

"All great theories are expansive, and all notions so rich in scope and implication are underpinned by visions about the nature of things. You may call these visions ‘philosophy’, or ‘metaphor’, or ‘organizing principle’, but one thing they are surely not - they are not simple inductions from observed facts of the natural world." (Stephen J Gould, "Time’s Arrow, Time’s Cycle", 1987)

"Facts do not 'speak for themselves'. They speak for or against competing theories. Facts divorced from theory or visions are mere isolated curiosities." (Thomas Sowell, "A Conflict of Visions: Ideological Origins of Political Struggles", 1987)

"[…] no good model ever accounted for all the facts, since some data was bound to be misleading if not plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do this and would thus be open to suspicion." (Francis H C Crick, "What Mad Pursuit: A Personal View of Scientific Discovery", 1988)

"Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory." (Stephen Hawking,  "A Brief History of Time", 1988)

"Theories are not so much wrong as incomplete." (Isaac Asimov, "The Relativity of Wrong", 1988)

"A discovery in science, or a new theory, even where it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalyzed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow: it takes a vast world unchallenged and for granted." (James R Oppenheimer, "Atom and Void", 1989)

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

"A law explains a set of observations; a theory explains a set of laws. […] Unlike laws, theories often postulate unobservable objects as part of their explanatory mechanism." (John L Casti, "Searching for Certainty", 1990)

"It is in the nature of theoretical science that there can be no such thing as certainty. A theory is only ‘true’ for as long as the majority of the scientific community maintain the view that the theory is the one best able to explain the observations." (Jim Baggott, "The Meaning of Quantum Theory", 1992)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Science is not about control. It is about cultivating a perpetual condition of wonder in the face of something that forever grows one step richer and subtler than our latest theory about it. It is about  reverence, not mastery." (Richard Power, "Gold Bug Variations", 1993) 

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"The amount of understanding produced by a theory is determined by how well it meets the criteria of adequacy - testability, fruitfulness, scope, simplicity, conservatism - because these criteria indicate the extent to which a theory systematizes and unifies our knowledge." (Theodore Schick Jr.,  "How to Think about Weird Things: Critical Thinking for a New Age", 1995)

"Scientists, being as a rule more or less human beings, passionately stick up for their ideas, their pet theories. It's up to someone else to show you are wrong." (Niles Eldredge, "Reinventing Darwin", 1995)

"There are two kinds of mistakes. There are fatal mistakes that destroy a theory; but there are also contingent ones, which are useful in testing the stability of a theory." (Gian-Carlo Rota, [lecture] 1996)

"Paradigms are the most general-rather like a philosophical or ideological framework. Theories are more specific, based on the paradigm and designed to describe what happens in one of the many realms of events encompassed by the paradigm. Models are even more specific providing the mechanisms by which events occur in a particular part of the theory's realm. Of all three, models are most affected by empirical data - models come and go, theories only give way when evidence is overwhelmingly against them and paradigms stay put until a radically better idea comes along." (Lee R Beach, "The Psychology of Decision Making: People in Organizations", 1997)

"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)

"An individual understands a concept, skill, theory, or domain of knowledge to the extent that he or she can apply it appropriately in a new situation." (Howard Gardner, "The Disciplined Mind", 1999)

"[…] philosophical theories are structured by conceptual metaphors that constrain which inferences can be drawn within that philosophical theory. The (typically unconscious) conceptual metaphors that are constitutive of a philosophical theory have the causal effect of constraining how you can reason within that philosophical framework." (George Lakoff, "Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought", 1999)

"All scientific theories, even those in the physical sciences, are developed in a particular cultural context. Although the context may help to explain the persistence of a theory in the face of apparently falsifying evidence, the fact that a theory arises from a particular context is not sufficient to condemn it. Theories and paradigms must be accepted, modified or rejected on the basis of evidence." (Richard P Bentall,  "Madness Explained: Psychosis and Human Nature", 2003)

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"In science, for a theory to be believed, it must make a prediction - different from those made by previous theories - for an experiment not yet done. For the experiment to be meaningful, we must be able to get an answer that disagrees with that prediction. When this is the case, we say that a theory is falsifiable - vulnerable to being shown false. The theory also has to be confirmable, it must be possible to verify a new prediction that only this theory makes. Only when a theory has been tested and the results agree with the theory do we advance the statement to the rank of a true scientific theory." (Lee Smolin, "The Trouble with Physics", 2006)

"A theory appears to be beautiful or elegant (or simple, if you prefer) when it can be expressed concisely in terms of mathematics we already have." (Murray Gell-Mann, "Beauty and Truth in Physics", 2007)

"A theory is a speculative explanation of a particular phenomenon which derives it legitimacy from conforming to the primary assumptions of the worldview of the culture in which it appears. There can be more than one theory for a particular phenomenon that conforms to a given worldview. […]  A new theory may seem to trigger a change in worldview, as in this case, but logically a change in worldview must precede a change in theory, otherwise the theory will not be viable. A change in worldview will necessitate a change in all theories in all branches of study." (M G Jackson, "Transformative Learning for a New Worldview: Learning to Think Differently", 2008)

"All scientific theories, even those in the physical sciences, are developed in a particular cultural context. Although the context may help to explain the persistence of a theory in the face of apparently falsifying evidence, the fact that a theory arises from a particular context is not sufficient to condemn it. Theories and paradigms must be accepted, modified or rejected on the basis of evidence."  (Richard P Bentall,  "Madness Explained: Psychosis and Human Nature", 2003) 

"With each theory or model, our concepts of reality and of the fundamental constituents of the universe have changed." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"A theory is a set of deductively closed propositions that explain and predict empirical phenomena, and a model is a theory that is idealized." (Jay Odenbaugh, "True Lies: Realism, Robustness, and Models", Philosophy of Science, Vol. 78, No. 5, 2011)

"Science would be better understood if we called theories ‘misconceptions’ from the outset, instead of only after we have discovered their successors." (David Deutsch, "Beginning of Infinity", 2011)

"Complexity has the propensity to overload systems, making the relevance of a particular piece of information not statistically significant. And when an array of mind-numbing factors is added into the equation, theory and models rarely conform to reality." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"[…] if one has a theory, one needs to be willing to try to prove it wrong as much as one tries to provide that it is right […]" (Lawrence M Krauss et al, A Universe from Nothing, 2013)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh,"Mathematics as an Empirical Phenomenon, Subject to Modeling", 2017)

"Scientists generally agree that no theory is 100 percent correct. Thus, the real test of knowledge is not truth, but utility." (Yuval N Harari, "Sapiens: A brief history of humankind", 2017) 

"A theory is nothing but a tool to know the reality. If a theory contradicts reality, it must be discarded at the earliest." (Awdhesh Singh, "Myths are Real, Reality is a Myth", 2018)

No comments:

Related Posts Plugin for WordPress, Blogger...