26 December 2018

Data Science: Causality (Just the Quotes)

"All human actions have one or more of these seven causes: chance, nature, compulsions, habit, reason, passion, desire." (Aristotle, 4th century BC)

"In all disciplines in which there is systematic knowledge of things with principles, causes, or elements, it arises from a grasp of those: we think we have knowledge of a thing when we have found its primary causes and principles, and followed it back to its elements." (Aristotle, "Physics", cca. 350 BC)

"Constantly regard the universe as one living being, having one substance and one soul; and observe how all things have reference to one perception, the perception of this one living being; and how all things act with one movement; and how all things are the cooperating causes of all things which exist; observe too the continuous spinning of the thread and the contexture of the web." (Marcus Aurelius, "Meditations". cca. 121–180 AD)

"The universal cause is one thing, a particular cause another. An effect can be haphazard with respect to the plan of the second, but not of the first. For an effect is not taken out of the scope of one particular cause save by another particular cause which prevents it, as when wood dowsed with water, will not catch fire. The first cause, however, cannot have a random effect in its own order, since all particular causes are comprehended in its causality. When an effect does escape from a system of particular causality, we speak of it as fortuitous or a chance happening […]" (Thomas Aquinas, “Summa Theologica”, cca. 1266-1273)

"All effects follow not with like certainty from their supposed causes." (David Hume, "An Enquiry Concerning Human Understanding", 1748)

"[…] chance, that is, an infinite number of events, with respect to which our ignorance will not permit us to perceive their causes, and the chain that connects them together. Now, this chance has a greater share in our education than is imagined. It is this that places certain objects before us and, in consequence of this, occasions more happy ideas, and sometimes leads us to the greatest discoveries […]" (Claude Adrien Helvetius, "On Mind", 1751)

"If an event can be produced by a number n of different causes, the probabilities of the existence of these causes, given the event (prises de l'événement), are to each other as the probabilities of the event, given the causes: and the probability of each cause is equal to the probability of the event, given that cause, divided by the sum of all the probabilities of the event, given each of the causes.” (Pierre-Simon Laplace, "Mémoire sur la Probabilité des Causes par les Événements", 1774)

"The word ‘chance’ then expresses only our ignorance of the causes of the phenomena that we observe to occur and to succeed one another in no apparent order. Probability is relative in part to this ignorance, and in part to our knowledge.” (Pierre-Simon Laplace, "Mémoire sur les Approximations des Formules qui sont Fonctions de Très Grands Nombres", 1783)

"Man’s mind cannot grasp the causes of events in their completeness, but the desire to find those causes is implanted in man’s soul. And without considering the multiplicity and complexity of the conditions any one of which taken separately may seem to be the cause, he snatches at the first approximation to a cause that seems to him intelligible and says: ‘This is the cause!’" (Leo Tolstoy, "War and Peace", 1867)

"There is a maxim which is often quoted, that ‘The same causes will always produce the same effects.’ To make this maxim intelligible we must define what we mean by the same causes and the same effects, since it is manifest that no event ever happens more that once, so that the causes and effects cannot be the same in all respects. [...] There is another maxim which must not be confounded with that quoted at the beginning of this article, which asserts ‘That like causes produce like effects’. This is only true when small variations in the initial circumstances produce only small variations in the final state of the system. In a great many physical phenomena this condition is satisfied; but there are other cases in which a small initial variation may produce a great change in the final state of the system, as when the displacement of the ‘points’ causes a railway train to run into another instead of keeping its proper course." (James C Maxwell, "Matter and Motion", 1876)

"'Causation' has been popularly used to express the condition of association, when applied to natural phenomena. There is no philosophical basis for giving it a wider meaning than partial or absolute association. In no case has it been proved that there is an inherent necessity in the laws of nature. Causation is correlation. [...] perfect correlation, when based upon sufficient experience, is causation in the scientific sense." (Henry E. Niles, "Correlation, Causation and Wright's Theory of 'Path Coefficients'", Genetics, 1922)

"To apply the category of cause and effect means to find out which parts of nature stand in this relation. Similarly, to apply the gestalt category means to find out which parts of nature belong as parts to functional wholes, to discover their position in these wholes, their degree of relative independence, and the articulation of larger wholes into sub-wholes." (Kurt Koffka, 1931)

"[...] the conception of chance enters in the very first steps of scientific activity in virtue of the fact that no observation is absolutely correct. I think chance is a more fundamental conception that causality; for whether in a concrete case, a cause-effect relation holds or not can only be judged by applying the laws of chance to the observation." (Max Born, 1949)

"There is no correlation between the cause and the effect. The events reveal only an aleatory determination, connected not so much with the imperfection of our knowledge as with the structure of the human world." (Raymond Aron, "The Opium of the Intellectuals", 1955)

"Nature is pleased with simplicity, and affects not the pomp of superfluous causes." (Morris Kline, "Mathematics and the Physical World", 1959) 

"Every part of the system is so related to every other part that a change in a particular part causes a changes in all other parts and in the total system." (Arthur D Hall, "A methodology for systems engineering", 1962)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"The complexities of cause and effect defy analysis." (Douglas Adams, "Dirk Gently's Holistic Detective Agency", 1987)

"Until we can distinguish between an event that is truly random and an event that is the result of cause and effect, we will never know whether what we see is what we'll get, nor how we got what we got. When we take a risk, we are betting on an outcome that will result from a decision we have made, though we do not know for certain what the outcome will be. The essence of risk management lies in maximizing the areas where we have some control over the outcome while minimizing the areas where we have absolutely no control over the outcome and the linkage between effect and cause is hidden from us." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Statistical models in the social sciences rely on correlations, generally not causes, of our behavior. It is inevitable that such models of reality do not capture reality well. This explains the excess of false positives and false negatives." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Statisticians set a high bar when they assign a cause to an effect. [...] A model that ignores cause–effect relationships cannot attain the status of a model in the physical sciences. This is a structural limitation that no amount of data - not even Big Data - can surmount." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Effects without an understanding of the causes behind them, on the other hand, are just bunches of data points floating in the ether, offering nothing useful by themselves. Big Data is information, equivalent to the patterns of light that fall onto the eye. Big Data is like the history of stimuli that our eyes have responded to. And as we discussed earlier, stimuli are themselves meaningless because they could mean anything. The same is true for Big Data, unless something transformative is brought to all those data sets… understanding." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

"Any time you run regression analysis on arbitrary real-world observational data, there’s a significant risk that there’s hidden confounding in your dataset and so causal conclusions from such analysis are likely to be (causally) biased." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"Expert knowledge is a term covering various types of knowledge that can help define or disambiguate causal relations between two or more variables. Depending on the context, expert knowledge might refer to knowledge from randomized controlled trials, laws of physics, a broad scope of experiences in a given area, and more." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"In summary, the relationship between different branches of contemporary machine learning and causality is nuanced. That said, most broadly adopted machine learning models operate on rung one, not having a causal world model." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"The basic goal of causal inference is to estimate the causal effect of one set of variables on another. In most cases, to do it accurately, we need to know which variables we should control for. [...] to accurately control for confounders, we need to go beyond the realm of pure statistics and use the information about the data-generating process, which can be encoded as a (causal) graph. In this sense, the ability to translate between graphical and statistical properties is central to causal inference." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"The causal interpretation of linear regression only holds when there are no spurious relationships in your data. This is the case in two scenarios: when you control for a set of all necessary variables (sometimes this set can be empty) or when your data comes from a properly designed randomized experiment." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"The first level of creativity [for evaluating causal models] is to use the refutation tests [...] The second level of creativity is available when you have access to historical data coming from randomized experiments. You can compare your observational model with the experimental results and try to adjust your model accordingly. The third level of creativity is to evaluate your modeling approach on simulated data with known outcomes. [...] The fourth level of creativity is sensitivity analysis." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"Although to penetrate into the intimate mysteries of nature and hence to learn the true causes of phenomena is not allowed to us, nevertheless it can happen that a certain fictive hypothesis may suffice for explaining many phenomena." (Leonhard Euler)

"Nature is pleased with simplicity, and affects not the pomp of superfluous causes." (Sir Issac Newton)

More quotes on "Causality" at the-web-of-knowledge.blogspot.com.

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.