"Figures are not always facts." (Aesop, "The Widow and the Hen", cca. 6th century BC)
"Things that matter most
Must never be at the mercy of things that matter least.
The first sign we don’t know what we are doing is an obsession with numbers." (Johann Wolfgang von Goethe)
"Round numbers are always false." (Samuel Johnson, [Letter to Thomas Boswell], 1778)
"There is no inquiry which is not finally reducible to a question of Numbers; for there is none which may not be conceived of as consisting in the determination of quantities by each other, according to certain relations." (Auguste Comte, “The Positive Philosophy”, 1830)
"There are two aspects of statistics that are continually mixed, the method and the science. Statistics are used as a method, whenever we measure something, for example, the size of a district, the number of inhabitants of a country, the quantity or price of certain commodities, etc. […] There is, moreover, a science of statistics. It consists of knowing how to gather numbers, combine them and calculate them, in the best way to lead to certain results. But this is, strictly speaking, a branch of mathematics." (Alphonse P de Candolle, "Considerations on Crime Statistics", 1833)
"Most statistical arguments depend upon a few figures picked out at random." (William S Jevons, [letter to Richard Hutton] 1863)
"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)
"[…] when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science." (William T Kelvin, "Electrical Units of Measurement", 1883)
"Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"Statistics may rightly be called the science of averages. […] Great numbers and the averages resulting from them, such as we always obtain in measuring social phenomena, have great inertia. […] It is this constancy of great numbers that makes statistical measurement possible. It is to great numbers that statistical measurement chiefly applies." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience." (Warren Weaver, 1952)
"Extrapolations are useful, particularly in the form of soothsaying called forecasting trends. But in looking at the figures or the charts made from them, it is necessary to remember one thing constantly: The trend to now may be a fact, but the future trend represents no more than an educated guess. Implicit in it is 'everything else being equal' and 'present trends continuing'. And somehow everything else refuses to remain equal." (Darell Huff, "How to Lie with Statistics", 1954)
"Quantitative performance measurements - whether single, multiple, or composite - are seen to have undesirable consequences for over-all organizational performance. The complexity of large organizations requires better knowledge of organizational behavior for managers to make best use of the personnel available to them." (V F Ridgway, "Dysfunctional Consequences of Performance Measurements", Administrative Science Quarterly Vol. 1 (2), 1956)
"The purpose of computing is insight, not numbers […] sometimes […] the purpose of computing numbers is not yet in sight." (Richard Hamming, "Numerical Methods for Scientists and Engineers", 1962)
"A well constructed numerical estimate can be worth a thousand words." (Charles L Schultze, 1967)
"Every graph is at least an indication, by contrast with some common instances of numbers." (John W Tukey, "Data Analysis, Including Statistics", 1968)
"What goes wrong [in long-range planning] is that sensible anticipation gets converted into foolish numbers: and their validity always hinges on large loose assumptions." (Robert Heller, "The Naked Manager: Games Executives Play", 1972)
"[...] be wary of analysts that try to quantify the unquantifiable." (Ralph Keeney & Raiffa Howard, "Decisions with Multiple Objectives: Preferences and Value Trade-offs", 1976)
"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)
"Numbers are the product of counting. Quantities are the product of measurement. This means that numbers can conceivably be accurate because there is a discontinuity between each integer and the next. Between two and three there is a jump. In the case of quantity there is no such jump, and because jump is missing in the world of quantity it is impossible for any quantity to be exact. You can have exactly three tomatoes. You can never have exactly three gallons of water. Always quantity is approximate." (Gregory Bateson, "Number is Different from Quantity", CoEvolution Quarterly, 1978)
"People often feel inept when faced with numerical data. Many of us think that we lack numeracy, the ability to cope with numbers. […] The fault is not in ourselves, but in our data. Most data are badly presented and so the cure lies with the producers of the data. To draw an analogy with literacy, we do not need to learn to read better, but writers need to be taught to write better." (Andrew Ehrenberg, "The problem of numeracy", American Statistician 35(2), 1981)
“Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]” (George Greenstein, “Frozen Star”, 1983)
"Inept graphics also flourish because many graphic artists believe that statistics are boring and tedious. It then follows that decorated graphics must pep up, animate, and all too often exaggerate what evidence there is in the data. […] If the statistics are boring, then you've got the wrong numbers." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)
"A final goal of any scientific theory must be the derivation of numbers. Theories stand or fall, ultimately, upon numbers." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)
"The drudgery of the numbers will make you free." (Harold Geneen, "Managing", 1984)
"The professional's grasp of the numbers is a measure of the control he has over the events that the figures represent." (Harold Geneen, "Managing", 1984)
"When you have mastered the numbers, you will in fact no longer be reading numbers, any more than you read words when reading a book. You will be reading meanings." (Harold Geneen & Alvin Moscow, "Managing", 1984)
"Numbers have undoubted powers to beguile and benumb, but critics must probe behind numbers to the character of arguments and the biases that motivate them." (Stephen J Gould, "An Urchin in the Storm: Essays About Books and Ideas", 1987)
"Whenever decisions are made strictly on the basis of bottom-line arithmetic, human beings get crunched along with the numbers." (Thomas R Horton, Management Review, 1987)
"When you are drowning in numbers you need a system to separate the wheat from the chaff." (Anthony Adams, The New York Times, 1988)
"Torture numbers, and they will confess to anything." (Gregg Easterbrook, New Republic, 1989)
"[…] you simply cannot make sense of any number without a contextual basis. Yet the traditional attempts to provide this contextual basis are often flawed in their execution. [...] Data have no meaning apart from their context. Data presented without a context are effectively rendered meaningless." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)
"Big numbers warn us that the problem is a common one, compelling our attention, concern, and action. The media like to report statistics because numbers seem to be 'hard facts' - little nuggets of indisputable truth. [...] One common innumerate error involves not distinguishing among large numbers. [...] Because many people have trouble appreciating the differences among big numbers, they tend to uncritically accept social statistics (which often, of course, feature big numbers)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)
"Not all statistics start out bad, but any statistic can be made worse. Numbers - even good numbers - can be misunderstood or misinterpreted. Their meanings can be stretched, twisted, distorted, or mangled. These alterations create what we can call mutant statistics - distorted versions of the original figures." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)
"Information needs representation. The idea that it is possible to communicate information in a 'pure' form is fiction. Successful risk communication requires intuitively clear representations. Playing with representations can help us not only to understand numbers (describe phenomena) but also to draw conclusions from numbers (make inferences). There is no single best representation, because what is needed always depends on the minds that are doing the communicating." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)
"Every number has its limitations; every number is a product of choices that inevitably involve compromise. Statistics are intended to help us summarize, to get an overview of part of the world’s complexity. But some information is always sacrificed in the process of choosing what will be counted and how. Something is, in short, always missing. In evaluating statistics, we should not forget what has been lost, if only because this helps us understand what we still have."
"In much the same way, people create statistics: they choose what to count, how to go about counting, which of the resulting numbers they share with others, and which words they use to describe and interpret those figures. Numbers do not exist independent of people; understanding numbers requires knowing who counted what, why they bothered counting, and how they went about it." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)
"Data, reason, and calculation can only produce conclusions; they do not inspire action. Good numbers are not the result of managing numbers." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)
"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)
"Our culture, obsessed with numbers, has given us the idea that what we can measure is more important than what we can't measure. Think about that for a minute. It means that we make quantity more important than quality." (Donella Meadows, "Thinking in Systems: A Primer", 2008)
"What gets measured gets managed - even when it’s pointless to measure and manage it, and even if it harms the purpose of the organisation to do so." (Simon Caulkin, "The rule is simple: be careful what you measure", 2008) [source]
"What gets measured gets managed - so be sure you have the right measures, because the wrong ones kill." (Simon Caulkin, "The rule is simple: be careful what you measure", 2008) [source]
"Numbers already rule your world. And you must not be in the dark about this fact. See how some applied scientists use statistical thinking to make our lives better. You will be amazed how you can use numbers to make everyday decisions in your own life." (Kaiser Fung, "Numbers Rule the World", 2010)
"Having NUMBERSENSE means: (•) Not taking published data at face value; (•) Knowing which questions to ask; (•) Having a nose for doctored statistics. [...] NUMBERSENSE is that bit of skepticism, urge to probe, and desire to verify. It’s having the truffle hog’s nose to hunt the delicacies. Developing NUMBERSENSE takes training and patience. It is essential to know a few basic statistical concepts. Understanding the nature of means, medians, and percentile ranks is important. Breaking down ratios into components facilitates clear thinking. Ratios can also be interpreted as weighted averages, with those weights arranged by rules of inclusion and exclusion. Missing data must be carefully vetted, especially when they are substituted with statistical estimates. Blatant fraud, while difficult to detect, is often exposed by inconsistency." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)
"NUMBERSENSE is not taking numbers at face value. NUMBERSENSE is the ability to relate numbers here to numbers there, to separate the credible from the chimerical. It means drawing the dividing line between science hour and story time." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)
"By giving numbers a proper shape, by visually encoding them, the graphic has saved you time and energy that you would otherwise waste if you had to use a table that was not designed to aid your mind." (Alberto Cairo, "The Functional Art", 2011)
"Most importantly, much of statistics involves clear thinking rather than numbers. And much, at least much of the statistical principles that reporters can most readily apply, is good sense."
"The value of having numbers - data - is that they aren't subject to someone else's interpretation. They are just the numbers. You can decide what they mean for you." (Emily Oster, "Expecting Better", 2013)
"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes."
"[…] humans make mistakes when they try to count large numbers in complicated systems. They make even greater errors when they attempt - as they always do - to reduce complicated systems to simple numbers." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)
"Most people do not relate to or retain columns of numbers, however much those numbers reflect something that they care about deeply. Statistics can be cold and dull."
"Numbers are not inherently tedious. They can be illuminating, fascinating, even entertaining. The trouble starts when we decide that it is more important for a graph to be artistic than informative."
"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)
"The search for better numbers, like the quest for new technologies to improve our lives, is certainly worthwhile. But the belief that a few simple numbers, a few basic averages, can capture the multifaceted nature of national and global economic systems is a myth. Rather than seeking new simple numbers to replace our old simple numbers, we need to tap into both the power of our information age and our ability to construct our own maps of the world to answer the questions we need answering." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)
"We don’t need new indicators that replace old simple numbers with new simple numbers. We need instead bespoke indicators, tailored to the specific needs and specific questions of governments, businesses, communities, and individuals."
"Analysis is a two-step process that has an exploratory and an explanatory phase. In order to create a powerful data story, you must effectively transition from data discovery (when you’re finding insights) to data communication (when you’re explaining them to an audience). If you don’t properly traverse these two phases, you may end up with something that resembles a data story but doesn’t have the same effect. Yes, it may have numbers, charts, and annotations, but because it’s poorly formed, it won’t achieve the same results." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)
"Are your insights based on data that is accurate and reliable? Trustworthy data is correct or valid, free from significant defects and gaps. The trustworthiness of your data begins with the proper collection, processing, and maintenance of the data at its source. However, the reliability of your numbers can also be influenced by how they are handled during the analysis process. Clean data can inadvertently lose its integrity and true meaning depending on how it is analyzed and interpreted." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)
"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"We tend to think of maths as being an 'exact' discipline, where answers are right or wrong. And it's true that there is a huge part of maths that is about exactness. But in everyday life, numerical answers are sometimes just the start of the debate. If we are trained to believe that every numerical question has a definite, 'right' answer then we miss the fact that numbers in the real world are a lot fuzzier than pure maths might suggest." (Rob Eastaway, "Maths on the Back of an Envelope", 2019)
"It’d be nice to fondly imagine that high-quality statistics simply appear in a spreadsheet somewhere, divine providence from the numerical heavens. Yet any dataset begins with somebody deciding to collect the numbers. What numbers are and aren’t collected, what is and isn’t measured, and who is included or excluded are the result of all-too-human assumptions, preconceptions, and oversights." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"Numbers can easily confuse us when they are unmoored from a clear definition." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"Premature enumeration is an equal-opportunity blunder: the most numerate among us may be just as much at risk as those who find their heads spinning at the first mention of a fraction. Indeed, if you’re confident with numbers you may be more prone than most to slicing and dicing, correlating and regressing, normalizing and rebasing, effortlessly manipulating the numbers on the spreadsheet or in the statistical package - without ever realizing that you don’t fully understand what these abstract quantities refer to. Arguably this temptation lay at the root of the last financial crisis: the sophistication of mathematical risk models obscured the question of how, exactly, risks were being measured, and whether those measurements were something you’d really want to bet your global banking system on." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"The whole discipline of statistics is built on measuring or counting things. […] it is important to understand what is being measured or counted, and how. It is surprising how rarely we do this. Over the years, as I found myself trying to lead people out of statistical mazes week after week, I came to realize that many of the problems I encountered were because people had taken a wrong turn right at the start. They had dived into the mathematics of a statistical claim - asking about sampling errors and margins of error, debating if the number is rising or falling, believing, doubting, analyzing, dissecting - without taking the ti- me to understand the first and most obvious fact: What is being measured, or counted? What definition is being used?" (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"Unless we’re collecting data ourselves, there’s a limit to how much we can do to combat the problem of missing data. But we can and should remember to ask who or what might be missing from the data we’re being told about. Some missing numbers are obvious […]. Other omissions show up only when we take a close look at the claim in question." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"We should conclude nothing because that pair of numbers alone tells us very little. If we want to understand what’s happening, we need to step back and take in a broader perspective." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"[...] although numbers may seem to be pure facts that exist independently from any human judgment, they are heavily laden with context and shaped by decisions - from how they are calculated to the units in which they are expressed." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)
"For numbers to be transparent, they must be placed in an appropriate context. Numbers must presented in a way that allows for fair comparisons." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)
"Numbers are ideal vehicles for promulgating bullshit. They feel objective, but are easily manipulated to tell whatever story one desires. Words are clearly constructs of human minds, but numbers? Numbers seem to come directly from Nature herself. We know words are subjective. We know they are used to bend and blur the truth. Words suggest intuition, feeling, and expressivity. But not numbers. Numbers suggest precision and imply a scientific approach. Numbers appear to have an existence separate from the humans reporting them." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)
"People do care about how they are measured. What can we do about this? If you are in the position to measure something, think about whether measuring it will change people’s behaviors in ways that undermine the value of your results. If you are looking at quantitative indicators that others have compiled, ask yourself: Are these numbers measuring what they are intended to measure? Or are people gaming the system and rendering this measure useless?" (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)
"So what does it mean to tell an honest story? Numbers should be presented in ways that allow meaningful comparisons."
"As long as measurements are abused as a tool of control, measuring will remain the weakest area in a manager’s performance." (Peter Drucker)
"If the statistics are boring, you've got the wrong numbers." (Edward Tufte)
"Nothing is so fallacious as facts, except figures." (George Canning) [attributed]
"Sometimes the numbers don’t explain everything. The numbers are not the business - they are symbols of the business." (Gerald Deitchle)
"Strategic planning is not strategic thinking. Indeed, strategic planning often spoils strategic thinking, causing managers to confuse real vision with the manipulation of numbers." (Henry Mintzberg)
No comments:
Post a Comment