24 December 2011

📉Graphical Representation: Change (Just the Quotes)

"By [diagrams] it is possible to present at a glance all the facts which could be obtained from figures as to the increase,  fluctuations, and relative importance of prices, quantities, and values of different classes of goods and trade with various countries; while the sharp irregularities of the curves give emphasis to the disturbing causes which produce any striking change." (Arthur L Bowley, "A Short Account of England's Foreign Trade in the Nineteenth Century, its Economic and Social Results", 1905)

"To summarize - with the ordinary arithmetical scale, fluctuations in large factors are very noticeable, while relatively greater fluctuations in smaller factors are barely apparent. The logarithmic scale permits the graphic representation of changes in every quantity without respect to the magnitude of the quantity itself. At the same time, the logarithmic scale shows the actual value by reference to the numbers in the vertical scale. By indicating both absolute and relative values and changes, the logarithmic scale combines the advantages of both the natural and the percentage scale without the disadvantages of either." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"With the ordinary scale, fluctuations in large factors are very noticeable, while relatively greater fluctuations in smaller factors are barely apparent. The semi-logarithmic scale permits the graphic representation of changes in every quantity on the same basis, without respect to the magnitude of the quantity itself. At the same time, it shows the actual value by reference to the numbers in the scale column. By indicating both absolute and relative value and changes to one scale, it combines the advantages of both the natural and percentage scale, without the disadvantages of either." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"A graph is a pictorial representation or statement of a series of values all drawn to scale. It gives a mental picture of the results of statistical examination in one case while in another it enables calculations to be made by drawing straight lines or it indicates a change in quantity together with the rate of that change. A graph then is a picture representing some happenings and so designed as to bring out all points of significance in connection with those happenings. When the curve has been plotted delineating these happenings a general inspection of it shows the essential character of the table or formula from which it was derived." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)

"In form, the ratio chart differs from the arithmetic chart in that the vertical scale is not divided into equal spaces to represent equal amounts, but is divided logarithmically to represent percentages of gain or loss. On the arithmetic chart equal vertical distances represent equal amounts of change; on the ratio chart equal vertical distances represent equal percentages of change." (Walter E Weld, "How to Chart; Facts from Figures with Graphs", 1959)

"The fact that index numbers attempt to measure changes of items gives rise to some knotty problems. The dispersion of a group of products increases with the passage of time, principally because some items have a long-run tendency to fall while others tend to rise. Basic changes in the demand is fundamentally responsible. The averages become less and less representative as the distance from the period increases." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The numerous design possibilities include several varieties of line graphs that are geared to particular types of problems. The design of a graph should be adapted to the type of data being structured. The data might be percentages, index numbers, frequency distributions, probability distributions, rates of change, numbers of dollars, and so on. Consequently, the designer must be prepared to structure his graph accordingly." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"At the heart of quantitative reasoning is a single question: Compared to what? Small multiple designs, multivariate and data bountiful, answer directly by visually enforcing comparisons of changes, of the differences among objects, of the scope of alternatives. For a wide range of problems in data presentation, small multiples are the best design solution." (Edward R Tufte, "Envisioning Information", 1990) 

"As a general rule, the fewer the time intervals used in the averaging process, the more closely the moving average curve resembles the curve of the actual data. Conversely, the greater the number of intervals, the smoother the moving average curve. […] Moving average curves tend to have a delayed reaction to changes." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)

"If you want to show the growth of numbers which tend to grow by percentages, plot them on a logarithmic vertical scale. When plotted against a logarithmic vertical axis, equal percentage changes take up equal distances on the vertical axis. Thus, a constant annual percentage rate of change will plot as a straight line. The vertical scale on a logarithmic chart does not start at zero, as it shows the ratio of values (in this case, land values), and dividing by zero is impossible." (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)

"We analyze numbers in order to know when a change has occurred in our processes or systems. We want to know about such changes in a timely manner so that we can respond appropriately. While this sounds rather straightforward, there is a complication - the numbers can change even when our process does not. So, in our analysis of numbers, we need to have a way to distinguish those changes in the numbers that represent changes in our process from those that are essentially noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"In assessing change, the spacing of the observations is much more important than the number of observations." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Comparing series visually can be misleading […]. Local variation is hidden when scaling the trends. We first need to make the series stationary (removing trend and/or seasonal components and/or differences in variability) and then compare changes over time. To do this, we log the series (to equalize variability) and difference each of them by subtracting last year’s value from this year’s value." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"Numbers are often useful in stories because they record a recent change in some amount, or because they are being compared with other numbers. Percentages, ratios and proportions are often better than raw numbers in establishing a context." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"Use a logarithmic scale when it is important to understand percent change or multiplicative factors. […] Showing data on a logarithmic scale can cure skewness toward large values." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"By showing recent change in relation to many past changes, sparklines provide a context for nuanced analysis - and, one hopes, better decisions. [...] Sparklines efficiently display and narrate binary data (presence/absence, occurrence/non-occurrence, win/loss). [...] Sparklines can simultaneously accommodate several variables. [...] Sparklines can narrate on-going results detail for any process producing sequential binary outcomes." (Edward R Tufte, "Beautiful Evidence", 2006)

"Where correlation exists, it is tempting to assume that one of the factors has caused the changes in the other (that is, that there is a cause-and-effect relationship between them). Although this may be true, often it is not. When an unwarranted or incorrect assumption is made about cause and effect, this is referred to as spurious correlation […]" (Alan Graham, "Developing Thinking in Statistics", 2006)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"Correlation measures the degree to which two phenomena are related to one another. [...] Two variables are positively correlated if a change in one is associated with a change in the other in the same direction, such as the relationship between height and weight. [...] A correlation is negative if a positive change in one variable is associated with a negative change in the other, such as the relationship between exercise and weight." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Sparklines aren't necessarily a variation on the line chart, rather, a clever use of them. [...] They take advantage of our visual perception capabilities to discriminate changes even at such a low resolution in terms of size. They facilitate opportunities to construct particularly dense visual displays of data in small space and so are particularly applicable for use on dashboards." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"After you visualize your data, there are certain things to look for […]: increasing, decreasing, outliers, or some mix, and of course, be sure you’re not mixing up noise for patterns. Also note how much of a change there is and how prominent the patterns are. How does the difference compare to the randomness in the data? Observations can stand out because of human or mechanical error, because of the uncertainty of estimated values, or because there was a person or thing that stood out from the rest. You should know which it is." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes." (Gary Smith, "Standard Deviations", 2014)

"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)

"Essentially, magnitude is the size of the effect. It’s a way to determine if the results are meaningful. Without magnitude, it’s hard to get a sense of how much something matters. […] the magnitude of an effect can change, depending on the relationship." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"A well-designed graph clearly shows you the relevant end points of a continuum. This is especially important if you’re documenting some actual or projected change in a quantity, and you want your readers to draw the right conclusions. […]" (Daniel J Levitin, "Weaponized Lies", 2017)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.