24 December 2011

📉Graphical Representation: Design (Just the Quotes)

"Good design looks right. It is simple (clear and uncomplicated). Good design is also elegant, and does not look contrived. A map should be aesthetically pleasing, thought provoking, and communicative."  (Arthur H Robinson, "Elements of Cartography", 1953)

"The design process involves a series of operations. In map design, it is convenient to break this sequence into three stages. In the first stage, you draw heavily on imagination and creativity. You think of various graphic possibilities, consider alternative ways." (Arthur H Robinson, "Elements of Cartography", 1953)

"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Without adequate planning. it is seldom possible to achieve either proper emphasis of each component element within the chart or a presentation that is pleasing in its entirely. Too often charts are developed around a single detail without sufficient regard for the work as a whole. Good chart design requires consideration of these four major factors: (1) size, (2) proportion, (3) position and margins, and (4) composition." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"An especially effective device for enhancing the explanatory power of time-series displays is to add spatial dimensions to the design of the graphic, so that the data are moving over space (in two or three dimensions) as well as over time. […] Occasionally graphics are belligerently multivariate, advertising the technique rather than the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Graphical excellence is the well-designed presentation of interesting data - a matter of substance, of statistics, and of design. Graphical excellence consists of complex ideas communicated with clarity, precision, and efficiency. Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space. Graphical excellence is nearly always multivariate. And graphical excellence requires telling the truth about the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Graphical competence demands three quite different skills: the substantive, statistical, and artistic. Yet now most graphical work, particularly at news publications, is under the direction of but a single expertise-the artistic. Allowing artist-illustrators to control the design and content of statistical graphics is almost like allowing typographers to control the content, style, and editing of prose. Substantive and quantitative expertise must also participate in the design of data graphics, at least if statistical integrity and graphical sophistication are to be achieved." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective way to describe, explore, and summarize a set of numbers even a very large set - is to look at pictures of those numbers. Furthermore, of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The theory of the visual display of quantitative information consists of principles that generate design options and that guide choices among options. The principles should not be applied rigidly or in a peevish spirit; they are not logically or mathematically certain; and it is better to violate any principle than to place graceless or inelegant marks on paper. Most principles of design should be greeted with some skepticism, for word authority can dominate our vision, and we may come to see only though the lenses of word authority rather than with our own eyes." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Charts offer opportunities to distort information, to misinform. An old adage can be extended to read: 'There are lies, damned lies, statistics and charts'. Our visual impressions are often more memorable than our understanding of the facts they describe. [...] Never let your design enthusiasms overrule your judgement of the truth." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Confusion and clutter are failures of design, not attributes of information. And so the point is to find design strategies that reveal detail and complexity - rather than to fault the data for an excess of complication. Or, worse, to fault viewers for a lack of understanding. Among the most powerful devices for reducing noise and enriching the content of displays is the technique of layering and separation, visually stratifying various aspects of the data." (Edward R Tufte, "Envisioning Information", 1990)

"The ducks of information design are false escapes from flatland, adding pretend dimensions to impoverished data sets, merely fooling around with information." (Edward R Tufte, "Envisioning Information", 1990)

"Visual displays rich with data are not only an appropriate and proper complement to human capabilities, but also such designs are frequently optimal. If the visual task is contrast, comparison, and choice - as so often it is - then the more relevant information within eyespan, the better. Vacant, low-density displays, the dreaded posterization of data spread over pages and pages, require viewers to rely on visual memory - a weak skill - to make a contrast, a comparison, a choice." (Edward R Tufte, "Envisioning Information", 1990)

"We envision information in order to reason about, communicate, document, and preserve that knowledge - activities nearly always carried out on two-dimensional paper and computer screen. Escaping this flatland and enriching the density of data displays are the essential tasks of information design." (Edward R Tufte, "Envisioning Information", 1990)

"The content and context of the numerical data determines the most appropriate mode of presentation. A few numbers can be listed, many numbers require a table. Relationships among numbers can be displayed by statistics. However, statistics, of necessity, are summary quantities so they cannot fully display the relationships, so a graph can be used to demonstrate them visually. The attractiveness of the form of the presentation is determined by word layout, data structure, and design." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Dashboards and visualization are cognitive tools that improve your 'span of control' over a lot of business data. These tools help people visually identify trends, patterns and anomalies, reason about what they see and help guide them toward effective decisions. As such, these tools need to leverage people's visual capabilities. With the prevalence of scorecards, dashboards and other visualization tools now widely available for business users to review their data, the issue of visual information design is more important than ever." (Richard Brath & Michael Peters, "Dashboard Design: Why Design is Important," DM Direct, 2004)

"An effective dashboard is the product not of cute gauges, meters, and traffic lights, but rather of informed design: more science than art, more simplicity than dazzle. It is, above all else, about communication." (Stephen Few, "Information Dashboard Design", 2006)

"Good design, however, can dispose of clutter and show all the data points and their names. [...] Clutter calls for a design solution, not a content reduction." (Edward R Tufte, "Beautiful Evidence", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"The principles of analytical design are universal - like mathematics, the laws of Nature, the deep structure of language - and are not tied to any particular language, culture, style, century, gender, or technology of information display." (Edward R Tufte, "Beautiful Evidence", 2006)

"For a given dataset there is not a great deal of advice which can be given on content and context. hose who know their own data should know best for their specific purposes. It is advisable to think hard about what should be shown and to check with others if the graphic makes the desired impression. Design should be let to designers, though some basic guidelines should be followed: consistency is important (sets of graphics should be in similar style and use equivalent scaling); proximity is helpful (place graphics on the same page, or on the facing page, of any text that refers to them); and layout should be checked (graphics should be neither too small nor too large and be attractively positioned relative to the whole page or display)." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"A viewer’s eye must be guided to 'read' the elements in a logical order. The design of an exploratory graphic needs to allow for the additional component of discovery - guiding the viewer to first understand the overall concept and then engage her to further explore the supporting information." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)

"Data art is characterized by a lack of structured narrative and absence of any visual analysis capability. Instead, the motivation is much more about creating an artifact, an aesthetic representation or perhaps a technical/technique demonstration. At the extreme end, a design may be more guided by the idea of fun or playfulness or maybe the creation of ornamentation." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Eye-catching data graphics tend to use designs that are unique (or nearly so) without being strongly focused on the data being displayed. In the world of Infovis, design goals can be pursued at the expense of statistical goals. In contrast, default statistical graphics are to a large extent determined by the structure of the data (line plots for time series, histograms for univariate data, scatterplots for bivariate nontime-series data, and so forth), with various conventions such as putting predictors on the horizontal axis and outcomes on the vertical axis. Most statistical graphs look like other graphs, and statisticians often think this is a good thing." (Andrew Gelman & Antony Unwin, "Infovis and Statistical Graphics: Different Goals, Different Looks" , Journal of Computational and Graphical Statistics Vol. 22(1), 2013)

"The biggest thing to know is that data visualization is hard. Really difficult to pull off well. It requires harmonization of several skills sets and ways of thinking: conceptual, analytic, statistical, graphic design, programmatic, interface-design, story-telling, journalism - plus a bit of ‘gut feel.’ The end result is often simple and beautiful, but the process itself is usually challenging and messy." (David McCandless, 2013)

"A fundamental principle of design is to consider multiple alternatives and then choose the best, rather than to immediately fixate on one solution without considering any alternatives. One way to ensure that more than one possibility is considered is to explicitly generate multiple ideas in parallel. " (Tamara Munzner, "Visualization Analysis and Design", 2014)

"As with all design problems, vis design cannot be easily handled as a simple process of optimization because trade-offs abound. A design that does well by one measure will rate poorly on another. The characterization of trade-offs in the vis design space is a very open problem at the frontier of vis research." (Tamara Munzner, "Visualization Analysis and Design", 2014)

"There are myriad questions that we can ask from data today. As such, it’s impossible to write enough reports or design a functioning dashboard that takes into account every conceivable contingency and answers every possible question." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"While visuals are an essential part of data storytelling, data visualizations can serve a variety of purposes from analysis to communication to even art. Most data charts are designed to disseminate information in a visual manner. Only a subset of data compositions is focused on presenting specific insights as opposed to just general information. When most data compositions combine both visualizations and text, it can be difficult to discern whether a particular scenario falls into the realm of data storytelling or not." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Another problem is that while data visualizations may appear to be objective, the designer has a great deal of control over the message a graphic conveys. Even using accurate data, a designer can manipulate how those data make us feel. She can create the illusion of a correlation where none exists, or make a small difference between groups look big." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Well-designed data graphics provide readers with deeper and more nuanced perspectives, while promoting the use of quantitative information in understanding the world and making decisions." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.