"The histogram, with its columns of area proportional to number, like the bar graph, is one of the most classical of statistical graphs. Its combination with a fitted bell-shaped curve has been common since the days when the Gaussian curve entered statistics. Yet as a graphical technique it really performs quite poorly. Who is there among us who can look at a histogram-fitted Gaussian combination and tell us, reliably, whether the fit is excellent, neutral, or poor? Who can tell us, when the fit is poor, of what the poorness consists? Yet these are just the sort of questions that a good graphical technique should answer at least approximately." (John W Tukey, "The Future of Processes of Data Analysis", 1965)
"The conditions under which many data graphics are produced - the lack of substantive and quantitative skills of the illustrators, dislike of quantitative evidence, and contempt for the intelligence of the audience-guarantee graphic mediocrity. These conditions engender graphics that (1) lie; (2) employ only the simplest designs, often unstandardized time-series based on a small handful of data points; and (3) miss the real news actually in the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)
"Although arguments can be made that high data density does not imply that a graphic will be good, nor one with low density bad, it does reflect on the efficiency of the transmission of information. Obviously, if we hold clarity and accuracy constant, more information is better than less. One of the great assets of graphical techniques is that they can convey large amounts of information in a small space." (Howard Wainer, "How to Display Data Badly", The American Statistician Vol. 38(2), 1984)
"The essence of a graphic display is that a set of numbers having both magnitudes and an order are represented by an appropriate visual metaphor - the magnitude and order of the metaphorical representation match the numbers. We can display data badly by ignoring or distorting this concept." (Howard Wainer, "How to Display Data Badly", The American Statistician Vol. 38(2), 1984)
"[…] the partial scale break is a weak indicator that the reader can fail to appreciate fully; visually the graph is still a single panel that invites the viewer to see, inappropriately, patterns between the two scales. […] The partial scale break also invites authors to connect points across the break, a poor practice indeed; […]" (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38" (4) 1984)
"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)
"Binning has two basic limitations. First, binning sacrifices resolution. Sometimes plots of the raw data will reveal interesting fine structure that is hidden by binning. However, advantages from binning often outweigh the disadvantage from lost resolution. [...] Second, binning does not extend well to high dimensions. With reasonable univariate resolution, say 50 regions each covering 2% of the range of the variable, the number of cells for a mere 10 variables is exceedingly large. For uniformly distributed data, it would take a huge sample size to fill a respectable fraction of the cells. The message is not so much that binning is bad but that high dimensional space is big. The complement to the curse of dimensionality is the blessing of large samples. Even in two and three dimensions having lots of data can bc very helpful when the observations are noisy and the structure non-trivial." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)
"Using area to encode quantitative information is a poor graphical method. Effects that can be readily perceived in other visualizations are often lost in an encoding by area." (William S Cleveland, "Visualizing Data", 1993)
"Good graphic design is not a panacea for bad copy, poor layout or misleading statistics. If any one of these facets are feebly executed it reflects poorly on the work overall, and this includes bad graphs and charts." (Brian Suda, "A Practical Guide to Designing with Data", 2010)
"Good design is an important part of any visualization, while decoration (or chart-junk) is best omitted. Statisticians should also be careful about comparing themselves to artists and designers; our goals are so different that we will fare poorly in comparison." (Hadley Wickham, "Graphical Criticism: Some Historical Notes", Journal of Computational and Graphical Statistics Vol. 22(1), 2013)
"Pitfall #1: not sharing your work with others prior to your presentation [...]
Pitfall #2: lack of audience engagement [...]
Pitfall #3: little or no eye contact with the audience [...]
Pitfall #4: making your work unreadable (small font) [...]
Pitfall #5: over the time limit [...]
Pitfall #6: showing too much information on a single slide [...]
Pitfall #7: failing to use appropriate data graphics to show insights [...]
Pitfall #8: showing a chart without an explanation [...]
Pitfall #9: presenting a chart without a clear takeaway [...]
Pitfall #10: showing so many variables on a single visual display that they impair the readability of the chart or graph" (Kristen Sosulski, "Data Visualization Made Simple: Insights into Becoming Visual", 2018)
"When there are few data points, place the data labels directly on the data. Data density refers to the amount of data shown in a visualization through encodings (points, bars, lines, etc.). A common mistake is presenting too much data in a single data graph. The data itself can obscure the insight. It can make the chart unreadable because the data values are not discernible. Examples include: overlapping data points, too many lines in a line chart, or too many slices in a pie chart. Selecting the appropriate amount of data requires a delicate balance. It is your job to determine how much detail is necessary." (Kristen Sosulski, "Data Visualization Made Simple: Insights into Becoming Visual", 2018)
No comments:
Post a Comment