"A type of error common in both simple and weighted averages is the inclusion of components which have no bearing on or merely distort the summarization. Errors of this kind are frequent in per capita estimates covering the total population. " (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"The grid lines should be lighter than the curves, with the base line somewhat heavier than the others. All vertical lines should be of equal weight, unless the time scale is subdivided in quarters or other time periods, indicated by heavier rules. Very wide base lines, sometimes employed for pictorial effect, distort the graphic impression by making the base line the most prominent feature of the chart." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)
"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)
"Visually, skewed sample distributions have one 'longer' and one 'shorter' tail. More general terms are 'heavier' and 'lighter' tails. Tail weight reflects not only distance from the center (tail length) but also the frequency of cases at that distance" (tail depth, in a histogram). Tail weight corresponds to actual weight if the sample histogram were cut out of wood and balanced like a seesaw on its median" (see next section). A positively skewed distribution is heavier to the right of the median; negative skew implies the opposite." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)
"The triangle is one of the best tools for visualizing a problem. Every difficult problem I've encountered in business breaks down into pieces, which carry different weight and importance. The pieces with the most importance sit at the top of the triangle, which progresses down to the sometimes thorny but less important piece at the base." (Terry Richey, "The Marketer's Visual Tool Kit", 1994)
"People tend to give greater weight to the data that they have just been exposed to than other relevant data. […] This phenomenon, where people give greater attention to recent or easily available data, is often referred to as an availability error." (Alan Graham, "Developing Thinking in Statistics", 2006)
"Basically, one can distinguish three motivations for weighted data. The first is a technical motivation. Whenever we look at purely categorical data, it is not necessary to supply a dataset case by case. A breakdown summary can capture the dataset without loss of any information. […] The second situation in which weights are introduced is when sampling unequally from a population. Statistics and graphics must then account for the weights. A third reason to use weights is a change of the sampling population." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)
"Sometimes itʼs better to have fewer choices and focus on the charts that best convey the story. A doughnut chart is not one of these. By removing the centre of a pie chart, it further hinders the ability to judge the weight of each segment. Moving from a healthy wedge to two arcs makes it harder for people to comprehend what value is represented. We know that a full pie chart is one hundred per cent and that any wedge is a fraction of that; if we are presented with only an arc, is it equivalent to the wedge, or is it less because it is missing a portion?" (Brian Suda, "A Practical Guide to Designing with Data", 2010)
"Correlation measures the degree to which two phenomena are related to one another. [...] Two variables are positively correlated if a change in one is associated with a change in the other in the same direction, such as the relationship between height and weight. [...] A correlation is negative if a positive change in one variable is associated with a negative change in the other, such as the relationship between exercise and weight." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)
"Once these different measures of performance are consolidated into a single number, that statistic can be used to make comparisons […] The advantage of any index is that it consolidates lots of complex information into a single number. We can then rank things that otherwise defy simple comparison […] Any index is highly sensitive to the descriptive statistics that are cobbled together to build it, and to the weight given to each of those components. As a result, indices range from useful but imperfect tools to complete charades." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)
"Scatterplots are still the go-to visualization when one is examining relationships between continuous variables. One of the problems with the traditional scatterplot is that all data points are presented as if they are on equal footing. [...] Bubble maps are scatterplots with added dimensions. The most common usage is to add weight to individual data points based on population." (Christopher Lysy, "Developments in Quantitative Data Display and Their Implications for Evaluation", 2013)
"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)
"Chart choices can also create weight within the entire composition. Presenting information as a comprehensive visualization, such as in a dashboard, requires thinking beyond individual charts. In writing, we not only craft sentences, but write the composition as an entire piece. Certain sentences may drive the writing more, but all sentences play a role in conveying the message." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)
No comments:
Post a Comment