01 December 2011

📉Graphical Representation: Percentages (Just the Quotes)

"[…] statistical literacy. That is, the ability to read diagrams and maps; a 'consumer' understanding of common statistical terms, as average, percent, dispersion, correlation, and index number."  (Douglas Scates, "Statistics: The Mathematics for Social Problems", 1943)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places, you begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"Charts not only tell what was, they tell what is; and a trend from was to is (projected linearly into the will be) contains better percentages than clumsy guessing." (Robert A Levy, "The Relative Strength Concept of Common Stock Forecasting", 1968)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982) 

"The ease with which somewhat complex statistics can produce confusion is important, because we live in a world in which complex numbers are becoming more common. Simple statistical ideas - fractions, percentages, rates - are reasonably well understood by many people. But many social problems involve complex chains of cause and effect that can be understood only through complicated models developed by experts. [...] environment has an influence. Sorting out the interconnected causes of these problems requires relatively complicated statistical ideas - net additions, odds ratios, and the like. If we have an imperfect understanding of these ideas, and if the reporters and other people who relay the statistics to us share our confusion - and they probably do - the chances are good that we'll soon be hearing - and repeating, and perhaps making decisions on the basis of - mutated statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"The most ubiquitous graph is the pie chart. It is a staple of the business world. [...] Never use a pie chart. Present a simple list of percentages, or whatever constitutes the divisions of the pie chart." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Why does representing information in terms of natural frequencies rather than probabilities or percentages foster insight? For two reasons. First, computational simplicity: The representation does part of the computation. And second, evolutionary and developmental primacy: Our minds are adapted to natural frequencies." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"Numbers are often useful in stories because they record a recent change in some amount, or because they are being compared with other numbers. Percentages, ratios and proportions are often better than raw numbers in establishing a context." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"The percentage is one of the best (mathematical) friends a journalist can have, because it quickly puts numbers into context. And it's a context that the vast majority of readers and viewers can comprehend immediately." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)

"Another way to obscure the truth is to hide it with relative numbers. […] Relative scales are always given as percentages or proportions. An increase or decrease of a given percentage only tells us part of the story, however. We are missing the anchoring of absolute values." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes." (Gary Smith, "Standard Deviations", 2014)

"How good the data quality is can be looked at both subjectively and objectively. The subjective component is based on the experience and needs of the stakeholders and can differ by who is being asked to judge it. For example, the data managers may see the data quality as excellent, but consumers may disagree. One way to assess it is to construct a survey for stakeholders and ask them about their perception of the data via a questionnaire. The other component of data quality is objective. Measuring the percentage of missing data elements, the degree of consistency between records, how quickly data can be retrieved on request, and the percentage of incorrect matches on identifiers (same identifier, different social security number, gender, date of birth) are some examples." (Aileen Rothbard, "Quality Issues in the Use of Administrative Data Records", 2015)

"Where there is no natural ordering to the categories it can be helpful to order them by size, as this can help you to pick out any patterns or compare the relative frequencies across groups. As it can be difficult to discern immediately the numbers represented in each of the categories it is good practice to include the number of observations on which the chart is based, together with the percentages in each category." (Jenny Freeman et al, "How to Display Data", 2008)

"Reporting numbers as percentages can obscure important changes in net values. […] Percentage calculations can give strange answers when any of the numbers involved are negative." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.