11 April 2006

DeWayne R Derryberry - Collected Quotes

"A complete data analysis will involve the following steps: (i) Finding a good model to fit the signal based on the data. (ii) Finding a good model to fit the noise, based on the residuals from the model. (iii) Adjusting variances, test statistics, confidence intervals, and predictions, based on the model for the noise.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"A key difference between a traditional statistical problems and a time series problem is that often, in time series, the errors are not independent." (DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"A stationary time series is one that has had trend elements (the signal) removed and that has a time invariant pattern in the random noise. In other words, although there is a pattern of serial correlation in the noise, that pattern seems to mimic a fixed mathematical model so that the same model fits any arbitrary, contiguous subset of the noise." (DeWayne R Derryberry, "Basic Data Analysis for Time Series with R" 1st Ed, 2014)

"A wide variety of statistical procedures (regression, t-tests, ANOVA) require three assumptions: (i) Normal observations or errors. (ii) Independent observations (or independent errors, which is equivalent, in normal linear models to independent observations). (iii) Equal variance - when that is appropriate (for the one-sample t-test, for example, there is nothing being compared, so equal variances do not apply).(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Both real and simulated data are very important for data analysis. Simulated data is useful because it is known what process generated the data. Hence it is known what the estimated signal and noise should look like (simulated data actually has a well-defined signal and well-defined noise). In this setting, it is possible to know, in a concrete manner, how well the modeling process has worked." (DeWayne R Derryberry, "Basic Data Analysis for Time Series with R" 1st Ed, 2014)

"Either a logarithmic or a square-root transformation of the data would produce a new series more amenable to fit a simple trigonometric model. It is often the case that periodic time series have rounded minima and sharp-peaked maxima. In these cases, the square root or logarithmic transformation seems to work well most of the time.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"For a confidence interval, the central limit theorem plays a role in the reliability of the interval because the sample mean is often approximately normal even when the underlying data is not. A prediction interval has no such protection. The shape of the interval reflects the shape of the underlying distribution. It is more important to examine carefully the normality assumption by checking the residuals […].(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"If the observations/errors are not independent, the statistical formulations are completely unreliable unless corrections can be made.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Not all data sets lend themselves to data splitting. The data set may be too small to split and/or the fitted model may be a local smoother. In the first case, there is too little data upon which to build a model if the data is split; and in the second case, it is not expected the model for any part of the data to directly interpolate/extrapolate to any other part of the model. For these cases, a different approach to cross-validation is possible, something similar to bootstrapping." (DeWayne R Derryberry, "Basic Data Analysis for Time Series with R" 1st Ed, 2014)

"Once a model has been fitted to the data, the deviations from the model are the residuals. If the model is appropriate, then the residuals mimic the true errors. Examination of the residuals often provides clues about departures from the modeling assumptions. Lack of fit - if there is curvature in the residuals, plotted versus the fitted values, this suggests there may be whole regions where the model overestimates the data and other whole regions where the model underestimates the data. This would suggest that the current model is too simple relative to some better model.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Prediction about the future assumes that the statistical model will continue to fit future data. There are several reasons this is often implausible, but it also seems clear that the model will often degenerate slowly in quality, so that the model will fit data only a few periods in the future almost as well as the data used to fit the model. To some degree, the reliability of extrapolation into the future involves subject-matter expertise.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"[The normality] assumption is the least important one for the reliability of the statistical procedures under discussion. Violations of the normality assumption can be divided into two general forms: Distributions that have heavier tails than the normal and distributions that are skewed rather than symmetric. If data is skewed, the formulas we are discussing are still valid as long as the sample size is sufficiently large. Although the guidance about 'how skewed' and 'how large a sample' can be quite vague, since the greater the skew, the larger the required sample size. For the data commonly used in time series and for the sample sizes (which are generally quite large) used, skew is not a problem. On the other hand, heavy tails can be very problematic." (DeWayne R Derryberry, "Basic Data Analysis for Time Series with R" 1st Ed, 2014)

 "The random element in most data analysis is assumed to be white noise - normal errors independent of each other. In a time series, the errors are often linked so that independence cannot be assumed (the last examples). Modeling the nature of this dependence is the key to time series.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Transformations of data alter statistics. For example, the mean of a data set can be found, but it is not easy to relate the mean of a data set to the mean of the logarithm of that data set. The median is far friendlier to transformations. If the median of a data set is found, then the logarithm of the data set is analyzed; the median of the log transformed data will be the log of the original median.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014) 

"When data is not normal, the reason the formulas are working is usually the central limit theorem. For large sample sizes, the formulas are producing parameter estimates that are approximately normal even when the data is not itself normal. The central limit theorem does make some assumptions and one is that the mean and variance of the population exist. Outliers in the data are evidence that these assumptions may not be true. Persistent outliers in the data, ones that are not errors and cannot be otherwise explained, suggest that the usual procedures based on the central limit theorem are not applicable.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Whenever the data is periodic, at some level, there are only as many observations as the number of complete periods. This global feature of the data suggests caution in understanding more detailed features of the data. While a curvature model might be appropriate for this data, there is too little data to know this, and some skepticism might be in order if such a model were fitted to the data." (DeWayne R Derryberry, "Basic Data Analysis for Time Series with R" 1st Ed, 2014)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.