18 April 2006

๐Ÿ–️Charu C Aggarwal - Collected Quotes

"A major advantage of probabilistic models is that they can be easily applied to virtually any data type (or mixed data type), as long as an appropriate generative model is available for each mixture component. [...] A downside of probabilistic models is that they try to fit the data to a particular kind of distribution, which may often not be appropriate for the underlying data. Furthermore, as the number of model parameters increases, over-fitting becomes more common. In such cases, the outliers may fit the underlying model of normal data. Many parametric models are also harder to interpret in terms of intensional knowledge, especially when the parameters of the model cannot be intuitively presented to an analyst in terms of underlying attributes. This can defeat one of the important purposes of anomaly detection, which is to provide diagnostic understanding of the abnormal data generative process." (Charu C Aggarwal, "Outlier Analysis", 2013)

"An attempt to use the wrong model for a given data set is likely to provide poor results. Therefore, the core principle of discovering outliers is based on assumptions about the structure of the normal patterns in a given data set. Clearly, the choice of the 'normal' model depends highly upon the analyst’s understanding of the natural data patterns in that particular domain." (Charu C Aggarwal, "Outlier Analysis", 2013)

"Dimensionality reduction and regression modeling are particularly hard to interpret in terms of original attributes, when the underlying data dimensionality is high. This is because the subspace embedding is defined as a linear combination of attributes with positive or negative coefficients. This cannot easily be intuitively interpreted in terms specific properties of the data attributes." (Charu C Aggarwal, "Outlier Analysis", 2013)

"Typically, most outlier detection algorithms use some quantified measure of the outlierness of a data point, such as the sparsity of the underlying region, nearest neighbor based distance, or the fit to the underlying data distribution. Every data point lies on a continuous spectrum from normal data to noise, and finally to anomalies [...] The separation of the different regions of this spectrum is often not precisely defined, and is chosen on an ad-hoc basis according to application-specific criteria. Furthermore, the separation between noise and anomalies is not pure, and many data points created by a noisy generative process may be deviant enough to be interpreted as anomalies on the basis of the outlier score. Thus, anomalies will typically have a much higher outlier score than noise, but this is not a distinguishing factor between the two as a matter of definition. Rather, it is the interest of the analyst, which regulates the distinction between noise and an anomaly." (Charu C Aggarwal, "Outlier Analysis", 2013) 

"Even though a natural way of avoiding overfitting is to simply build smaller networks (with fewer units and parameters), it has often been observed that it is better to build large networks and then regularize them in order to avoid overfitting. This is because large networks retain the option of building a more complex model if it is truly warranted. At the same time, the regularization process can smooth out the random artifacts that are not supported by sufficient data. By using this approach, we are giving the model the choice to decide what complexity it needs, rather than making a rigid decision for the model up front (which might even underfit the data)." (Charu C Aggarwal, "Neural Networks and Deep Learning: A Textbook", 2018)

"Regularization is particularly important when the amount of available data is limited. A neat biological interpretation of regularization is that it corresponds to gradual forgetting, as a result of which 'less important' (i.e., noisy) patterns are removed. In general, it is often advisable to use more complex models with regularization rather than simpler models without regularization." (Charu C Aggarwal, "Neural Networks and Deep Learning: A Textbook", 2018)

"The high generalization error in a neural network may be caused by several reasons. First, the data itself might have a lot of noise, in which case there is little one can do in order to improve accuracy. Second, neural networks are hard to train, and the large error might be caused by the poor convergence behavior of the algorithm. The error might also be caused by high bias, which is referred to as underfitting. Finally, overfitting (i.e., high variance) may cause a large part of the generalization error. In most cases, the error is a combination of more than one of these different factors." (Charu C Aggarwal, "Neural Networks and Deep Learning: A Textbook", 2018)

"The idea behind deeper architectures is that they can better leverage repeated regularities in the data patterns in order to reduce the number of computational units and therefore generalize the learning even to areas of the data space where one does not have examples. Often these repeated regularities are learned by the neural network within the weights as the basis vectors of hierarchical features." (Charu C Aggarwal, "Neural Networks and Deep Learning: A Textbook", 2018)

"A key point is that an increased number of attributes relative to training points provides additional degrees of freedom to the optimization problem, as a result of which irrelevant solutions become more likely. Therefore, a natural solution is to add a penalty for using additional features." (Charu C Aggarwal, "Artificial Intelligence: A Textbook", 2021)

"In general, the more complex the data, the more the analyst has to make prior inferences of what is considered normal for modeling purposes." (Charu C Aggarwal, "Artificial Intelligence: A Textbook", 2021)

"The ability to go beyond human domain knowledge is usually achieved by inductive learning methods that are unfettered from the imperfections in the domain knowledge of deductive methods." (Charu C Aggarwal, "Artificial Intelligence: A Textbook", 2021)

"The Monte Carlo tree search method is naturally suited to non-deterministic settings such as card games or backgammon. Minimax trees are not well suited to non-deterministic settings because of the inability to predict the opponent’s moves while building the tree. On the other hand, Monte Carlo tree search is naturally suited to handling such settings, since the desirability of moves is always evaluated in an expected sense. The randomness in the game can be naturally combined with the randomness in move sampling in order to learn the expected outcomes from each choice of move." (Charu C Aggarwal, "Artificial Intelligence: A Textbook", 2021)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.