16 April 2006

๐Ÿ–️Danish Haroon - Collected Quotes

"Boosting defines an objective function to measure the performance of a model given a certain set of parameters. The objective function contains two parts: regularization and training loss, both of which add to one another. The training loss measures how predictive our model is on the training data. The most commonly used training loss function includes mean squared error and logistic regression. The regularization term controls the complexity of the model, which helps avoid overfitting." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Boosting is a non-linear flexible regression technique that helps increase the accuracy of trees by assigning more weights to wrong predictions. The reason for inducing more weight is so the model can emphasize more on these wrongly predicted samples and tune itself to increase accuracy. The gradient boosting method solves the inherent problem in boosting trees (i.e., low speed and human interpretability). The algorithm supports parallelism by specifying the number of threads." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Cluster analysis refers to the grouping of observations so that the objects within each cluster share similar properties, and properties of all clusters are independent of each other. Cluster algorithms usually optimize by maximizing the distance among clusters and minimizing the distance between objects in a cluster. Cluster analysis does not complete in a single iteration but goes through several iterations until the model converges. Model convergence means that the cluster memberships of all objects converge and don’t change with every new iteration." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"In Boosting, the selection of samples is done by giving more and more weight to hard-to-classify observations. Gradient boosting classification produces a prediction model in the form of an ensemble of weak predictive models, usually decision trees. It generalizes the model by optimizing for the arbitrary differentiable loss function. At each stage, regression trees fit on the negative gradient of binomial or multinomial deviance loss function." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Multicollinearity and Singularity are two concepts which undermines the regression modeling, resulting in bizarre and inaccurate results. If exploratory variables are highly correlated, then regression becomes vulnerable to biases. Multicollinearity refers to a correlation of 0.9 or higher, whereas singularity refers to a perfect correlation (i.e., 1)." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Multivariate analysis refers to incorporation of multiple exploratory variables to understand the behavior of a response variable. This seems to be the most feasible and realistic approach considering the fact that entities within this world are usually interconnected. Thus the variability in response variable might be affected by the variability in the interconnected exploratory variables." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Null hypothesis is something we attempt to find evidence against in the hypothesis tests. Null hypothesis is usually an initial claim that researchers make on the basis of previous knowledge or experience. Alternative hypothesis has a population parameter value different from that of null hypothesis. Alternative hypothesis is something you hope to come out to be true. Statistical tests are performed to decide which of these holds true in a hypothesis test. If the experiment goes in favor of the null hypothesis then we say the experiment has failed in rejecting the null hypothesis." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Overfitting refers to the phenomenon where a model is highly fitted on a dataset. This generalization thus deprives the model from making highly accurate predictions about unseen data. [...] Underfitting is a phenomenon where the model is not trained with high precision on data at hand. The treatment of underfitting is subject to bias and variance. A model will have a high bias if both train and test errors are high [...] If a model has a high bias type underfitting, then the remedy can be to increase the model complexity, and if a model is suffering from high variance type underfitting, then the cure can be to bring in more data or otherwise make the model less complex." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"Regression describes the relationship between an exploratory variable (i.e., independent) and a response variable (i.e., dependent). Exploratory variables are also referred to as predictors and can have a frequency of more than 1. Regression is being used within the realm of predictions and forecasting. Regression determines the change in response variable when one exploratory variable is varied while the other independent variables are kept constant. This is done to understand the relationship that each of those exploratory variables exhibits." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.