"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] fiding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Bayesian inference is a controversial approach because it inherently embraces a subjective notion of probability. In general, Bayesian methods provide no guarantees on long run performance." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Bayesian inference is appealing when prior information is available since Bayes’ theorem is a natural way to combine prior information with data. Some people find Bayesian inference psychologically appealing because it allows us to make probability statements about parameters. […] In parametric models, with large samples, Bayesian and frequentist methods give approximately the same inferences. In general, they need not agree." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Inequalities are useful for bounding quantities that might otherwise be hard to compute." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Probability is a mathematical language for quantifying uncertainty." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Statistical inference, or 'learning' as it is called in computer science, is the process of using data to infer the distribution that generated the data." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"[…] studying methods for parametric models is useful for two reasons. First, there are some cases where background knowledge suggests that a parametric model provides a reasonable approximation. […] Second, the inferential concepts for parametric models provide background for understanding certain nonparametric methods." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"The Bayesian approach is based on the following postulates: (B1) Probability describes degree of belief, not limiting frequency. As such, we can make probability statements about lots of things, not just data which are subject to random variation. […] (B2) We can make probability statements about parameters, even though they are fixed constants. (B3) We make inferences about a parameter ฮธ by producing a probability distribution for ฮธ. Inferences, such as point estimates and interval estimates, may then be extracted from this distribution." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"The frequentist point of view is based on the following postulates: (F1) Probability refers to limiting relative frequencies. Probabilities are objective properties of the real world. (F2) Parameters are i xed, unknown constants. Because they are not fluctuating, no useful probability statements can be made about parameters. (F3) Statistical procedures should be designed to have well-defined long run frequency properties." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"The important thing is to understand that frequentist and Bayesian methods are answering different questions. To combine prior beliefs with data in a principled way, use Bayesian inference. To construct procedures with guaranteed long run performance, such as confidence intervals, use frequentist methods. Generally, Bayesian methods run into problems when the parameter space is high dimensional." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"The most important aspect of probability theory concerns the behavior of sequences of random variables." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"There is a tendency to use hypothesis testing methods even when they are not appropriate. Often, estimation and confidence intervals are better tools. Use hypothesis testing only when you want to test a well-defined hypothesis." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algorithms are more scalable than statisticians ever thought possible. Formal statistical theory is more pervasive than computer scientists had realized." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
"Undirected graphs are an alternative to directed graphs for representing independence relations. Since both directed and undirected graphs are used in practice, it is a good idea to be facile with both. The main difference between the two is that the rules for reading independence relations from the graph are different." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)
No comments:
Post a Comment