13 November 2011

📉Graphical Representation: Density (Just the Quotes)

"Although arguments can be made that high data density does not imply that a graphic will be good, nor one with low density bad, it does reflect on the efficiency of the transmission of information. Obviously, if we hold clarity and accuracy constant, more information is better than less. One of the great assets of graphical techniques is that they can convey large amounts of information in a small space." (Howard Wainer, "How to Display Data Badly", The American Statistician Vol. 38(2), 1984) 

"Equal variability is not always achieved in plots. For instance, if the theoretical distribution for a probability plot has a density that drops off gradually to zero in the tails (as the normal density does), then the variability of the data in the tails of the probability plot is greater than in the center. Another example is provided by the histogram. Since the height of any one bar has a binomial distribution, the standard deviation of the height is approximately proportional to the square root of the expected height; hence, the variability of the longer bars is greater." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"[…] the only worse design than a pie chart is several of them, for then the viewer is asked to compare quantities located in spatial disarray both within and between pies. […] Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Visual displays rich with data are not only an appropriate and proper complement to human capabilities, but also such designs are frequently optimal. If the visual task is contrast, comparison, and choice - as so often it is - then the more relevant information within eyespan, the better. Vacant, low-density displays, the dreaded posterization of data spread over pages and pages, require viewers to rely on visual memory - a weak skill - to make a contrast, a comparison, a choice." (Edward R Tufte, "Envisioning Information", 1990)

"We envision information in order to reason about, communicate, document, and preserve that knowledge - activities nearly always carried out on two-dimensional paper and computer screen. Escaping this flatland and enriching the density of data displays are the essential tasks of information design." (Edward R Tufte, "Envisioning Information", 1990)

"Using colour, itʼs possible to increase the density of information even further. A single colour can be used to represent two variables simultaneously. The difficulty, however, is that there is a limited amount of information that can be packed into colour without confusion." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The use of the density scale to construct the histogram ensures that the area of each rectangle in the histogram will be proportional to the corresponding relative frequency. The formula for density can also be used when class widths are equal. However, when the intervals are of equal width, the extra arithmetic required to obtain the densities is unnecessary." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Linking is a powerful dynamic interactive graphics technique that can help us better understand high-dimensional data. This technique works in the following way: When several plots are linked, selecting an observation's point in a plot will do more than highlight the observation in the plot we are interacting with - it will also highlight points in other plots with which it is linked, giving us a more complete idea of its value across all the variables. Selecting is done interactively with a pointing device. The point selected, and corresponding points in the other linked plots, are highlighted simultaneously. Thus, we can select a cluster of points in one plot and see if it corresponds to a cluster in any other plot, enabling us to investigate the high-dimensional shape and density of the cluster of points, and permitting us to investigate the structure of the disease space." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"When there are few data points, place the data labels directly on the data. Data density refers to the amount of data shown in a visualization through encodings (points, bars, lines, etc.). A common mistake is presenting too much data in a single data graph. The data itself can obscure the insight. It can make the chart unreadable because the data values are not discernible. Examples include: overlapping data points, too many lines in a line chart, or too many slices in a pie chart. Selecting the appropriate amount of data requires a delicate balance. It is your job to determine how much detail is necessary." (Kristen Sosulski, "Data Visualization Made Simple: Insights into Becoming Visual", 2018)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.