"Logging size transforms the original skewed distribution into a more symmetrical one by pulling in the long right tail of the distribution toward the mean. The short left tail is, in addition, stretched. The shift toward symmetrical distribution produced by the log transform is not, of course, merely for convenience. Symmetrical distributions, especially those that resemble the normal distribution, fulfill statistical assumptions that form the basis of statistical significance testing in the regression model."
"The quantile plot is a good general display since it is fairly easy to construct and does a good job of portraying many aspects of a distribution. Three convenient features of the plot are the following: First, in constructing it, we do not make any arbitrary choices of parameter values or cell boundaries [...] and no models for the data are fitted or assumed. Second, like a table, it is not a summary but a display of all the data. Third, on the quantile plot every point is plotted at a distinct location, even if there are duplicates in the data. The number of points that can be portrayed without overlap is limited only by the resolution of the plotting device. For a high resolution device several hundred points distinguished." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"One graph is more effective than another if its quantitative information can be decoded more quickly or more easily by most observers. […] This definition of effectiveness assumes that the reason we draw graphs is to communicate information - but there are actually many other reasons to draw graphs." (Naomi B Robbins, "Creating More effective Graphs", 2005)
"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance).
"Where correlation exists, it is tempting to assume that one of the factors has caused the changes in the other (that is, that there is a cause-and-effect relationship between them). Although this may be true, often it is not. When an unwarranted or incorrect assumption is made about cause and effect, this is referred to as spurious correlation […]
"Too often there is a disconnect between the people who run a study and those who do the data analysis. This is as predictable as it is unfortunate. If data are gathered with particular hypotheses in mind, too often they (the data) are passed on to someone who is tasked with testing those hypotheses and who has only marginal knowledge of the subject matter. Graphical displays, if prepared at all, are just summaries or tests of the assumptions underlying the tests being done. Broader displays, that have the potential of showing us things that we had not expected, are either not done at all, or their message is not able to be fully appreciated by the data analyst." (Howard Wainer, Comment, Journal of Computational and Graphical Statistics Vol. 20(1), 2011)
"Data visualization is a means to an end, not an end in itself. It's merely a bridge connecting the messenger to the receiver and its limitations are framed by our own inherent irrationalities, prejudices, assumptions, and irrational tastes. All these factors can undermine the consistency and reliability of any predicted reaction to a given visualization, but that is something we can't realistically influence." (Andy Kirk, "Data Visualization: A successful design process", 2012)
"Data visualization is a means to an end, not an end in itself. It's merely a bridge connecting the messenger to the receiver and its limitations are framed by our own inherent irrationalities, prejudices, assumptions, and irrational tastes. All these factors can undermine the consistency and reliability of any predicted reaction to a given visualization, but that is something we can't realistically influence." (Andy Kirk, "Data Visualization: A successful design process", 2012)
"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)
"Some scientists (e.g., econometricians) like to work with mathematical equations; others (e.g., hard-core statisticians) prefer a list of assumptions that ostensibly summarizes the structure of the diagram. Regardless of language, the model should depict, however qualitatively, the process that generates the data - in other words, the cause-effect forces that operate in the environment and shape the data generated." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)
No comments:
Post a Comment