"In certain respects, line graphs are uniquely applicable to particular graphic requirements for which a bar or circle chart could not be substituted. Strictly speaking, the line graph must be used to portray changes in a continuous variable, since technically such a variable must be represented by a line and not by 'points' or 'bars'. Line graphs are often uniquely applicable to problems of analysis, particularly when it is essential to visualize a trend, observe the behavior of a set of variables through time, or portray the same variable in differing time periods." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)
"Although in most cases the actual value designated by a bar is determined by the location of the end of the bar, many people associate the length or area of the bar with its value. As long as the scale is linear, starts at zero, is continuous, and the bars are the same width, this presents no problem. When any of these conditions are changed, the potential exists that the graph will be misinterpreted." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"Use of a histogram should be strictly reserved for continuous numerical data or for data that can be effectively modelled as continuous […]. Unlike bar charts, therefore, the bars of a histogram corresponding to adjacent intervals should not have gaps between them, for obvious reasons." (Alan Graham, "Developing Thinking in Statistics", 2006)
"When it comes to drawing a picture of continuous data, you need to think through carefully where one interval ends and the next one begins. Failing to do this can result in overlaps or gaps between adjacent intervals, which can cause confusion." (Alan Graham, "Developing Thinking in Statistics", 2006)
"Like a black hole or any similar rent in the warp and woof of space-time, a singularity is a disruption of continuity, a break with the past. It is a point at which everything changes, and a point beyond which we can’t see." (Scott Rosenberg, "Dreaming in Code", 2007)
"The first requirement of a beautiful visualization is that it is novel, fresh, or unique. It is difficult (though not impossible) to achieve the necessary novelty using default formats. In most situations, well-defined formats have well-defined, rational conventions of use: line graphs for continuous data, bar graphs for discrete data, pie graphs for when you are more interested in a pretty picture than conveying knowledge." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)
"Scatterplots are still the go-to visualization when one is examining relationships between continuous variables. One of the problems with the traditional scatterplot is that all data points are presented as if they are on equal footing. [...] Bubble maps are scatterplots with added dimensions. The most common usage is to add weight to individual data points based on population." (Christopher Lysy, "Developments in Quantitative Data Display and Their Implications for Evaluation", 2013)
"Broadly defined, data means events that are captured and made available for analysis. A data source is a consistent record of these events. And a data product translates this record of events into something that can easily be understood. [...] Data products can be organized and characterized by a series of continuums that describe the nature of the data and how it is presented." (Zach Gemignani et al, "Data Fluency", 2014)
"Complementary colors send a message of opposition but also of balance. A chart with saturated complementary colors is an aggressively colored chart in which the colors fight (equally) for their share of attention. Apply this rule when you intend to represent very distinct variables or those that for some reason you want to show as contrasting each other. Do not use complementary colors when variables have some form of continuity or order." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)
"The law of continuity states that we interpret images so as not to generate abrupt transitions or otherwise create images that are more complex. […] we can arbitrarily fill in the missing elements to complete a pattern. It’s also the case of time series, in which we assume that data points in the future will be a smooth continuation of the past. […] In a line chart, those series with a similar slope (that is, they appear to follow the same direction) are understood as belonging to the same group." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)
"A histogram represents the frequency distribution of the data. Histograms are similar to bar charts but group numbers into ranges. Also, a histogram lets you show the frequency distribution of continuous data. This helps in analyzing the distribution" (for example, normal or Gaussian), any outliers present in the data, and skewness." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)
"A well-designed graph clearly shows you the relevant end points of a continuum. This is especially important if you’re documenting some actual or projected change in a quantity, and you want your readers to draw the right conclusions. […]" (Daniel J Levitin, "Weaponized Lies", 2017)
No comments:
Post a Comment