31 August 2025

🔭Data Science: Statistical Tests (Just the Quotes)

"The practical power of a statistical test is the product of its statistical power and the probability of use." (John W Tukey, A Quick, "Compact, Two Sample Test to Duckworth’s Specifications", 1959)

"Statistical significance testing has involved more fantasy than fact. The emphasis on statistical significance over scientific significance in educational research represents a corrupt form of the scientific method. Educational research would be better off if it stopped testing its results for statistical significance. (Ronald P. Carver,The case against statistical testing", Harvard Educational Review 48, 1978)

"Statistical significance testing can involve a tautological logic in which tired researchers, having collected data on hundreds of subjects, then conduct a statistical test to evaluate whether there were a lot of subjects, which the researchers already know, because they collected the data and know they are tired. This tautology has created considerable damage as regards the cumulation of knowledge." (Bruce Thompson,Two and One-Half Decades of Leadership in Measurement and Evaluation", Journal of Counseling & Development 70" (3), 1992)

“The practical definitions of randomness - a sequence is random by virtue of how many and which statistical tests it satisfies and a sequence is random by virtue of the length of the algorithm necessary to describe it [...].” (Deborah J Bennett, “Randomness”, 1998)

"First, if you already know that the population from which your sample has been taken is normally distributed (perhaps you have data for a variable that has been studied before), you can assume the distribution of sample means from this population will also be normally distributed. Second, the central limit theorem […] states that the distribution of the means of samples of about 25 or more taken from any population will be approximately normal, provided the population is not grossly non-normal (e.g. a population that is bimodal). Therefore, provided your sample size is sufficiently large you can usually do a parametric test. Finally, you can examine your sample. Although there are statistical tests for normality, many statisticians have cautioned that these tests often indicate the sample is significantly non normal even when a t-test will still give reliable results." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"Statistical tests are just a way of working out the probability of obtaining the observed, or an even more extreme, difference among samples (or between an observed and expected value) if a specific hypothesis (usually the null of no difference) is true. Once the probability is known, the experimenter can make a decision about the difference, using criteria that are uniformly used and understood." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"What is so unconventional about the statistical way of thinking? First, statisticians do not care much for the popular concept of the statistical average; instead, they fixate on any deviation from the average. They worry about how large these variations are, how frequently they occur, and why they exist. [...] Second, variability does not need to be explained by reasonable causes, despite our natural desire for a rational explanation of everything; statisticians are frequently just as happy to pore over patterns of correlation. [...] Third, statisticians are constantly looking out for missed nuances: a statistical average for all groups may well hide vital differences that exist between these groups. Ignoring group differences when they are present frequently portends inequitable treatment. [...] Fourth, decisions based on statistics can be calibrated to strike a balance between two types of errors. Predictably, decision makers have an incentive to focus exclusively on minimizing any mistake that could bring about public humiliation, but statisticians point out that because of this bias, their decisions will aggravate other errors, which are unnoticed but serious. [...] Finally, statisticians follow a specific protocol known as statistical testing when deciding whether the evidence fits the crime, so to speak. Unlike some of us, they don’t believe in miracles. In other words, if the most unusual coincidence must be contrived to explain the inexplicable, they prefer leaving the crime unsolved." (Kaiser Fung,Numbers Rule the World", 2010) 

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith,Standard Deviations", 2014)

"Null hypothesis is something we attempt to find evidence against in the hypothesis tests. Null hypothesis is usually an initial claim that researchers make on the basis of previous knowledge or experience. Alternative hypothesis has a population parameter value different from that of null hypothesis. Alternative hypothesis is something you hope to come out to be true. Statistical tests are performed to decide which of these holds true in a hypothesis test. If the experiment goes in favor of the null hypothesis then we say the experiment has failed in rejecting the null hypothesis." (Danish Haroon,Python Machine Learning Case Studies", 2017)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.