31 December 2014

🕸Systems Engineering: Idealization (Just the Quotes)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"[…] if a system is sufficiently complicated, the time it takes to return near a state already visited is huge (think of the hundred fleas on the checkerboard). Therefore if you look at the system for a moderate amount of time, eternal return is irrelevant, and you had better choose another idealization." (David Ruelle, "Chance and Chaos", 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"A first important remark is that nature gives us mathematical hints. […] A second important remark is that mathematical physics deals with idealized systems. […] The third important remark is that nature may hint at a theorem but does not state clearly under which conditions is true." (David Ruelle, "The Mathematician's Brain", 2007)

"Cellular automata (CA) are idealizations of physical systems in which both space and time are assumed to be discrete and each of the interacting units can have only a finite number of discrete states." (Andreas Schadschneider et al, "Vehicular Traffic II: The Nagel–Schreckenberg Model", 2011)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

30 December 2014

🕸Systems Engineering: Information Theory (Just the Quotes)

"[…] information theory is characterised essentially by its dealing always with a set of possibilities; both its primary data and its final statements are almost always about the set as such, and not about some individual element in the set." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The general notion in communication theory is that of information. In many cases, the flow of information corresponds to a flow of energy, e. g. if light waves emitted by some objects reach the eye or a photoelectric cell, elicit some reaction of the organism or some machinery, and thus convey information." (Ludwig von Bertalanffy, "General System Theory", 1968) 

"The 'flow of information' through human communication channels is enormous. So far no theory exists, to our knowledge, which attributes any sort of unambiguous measure to this 'flow'." (Anatol Rapoport, "Modern Systems Research for the Behavioral Scientist", 1969)

"Probability plays a central role in many fields, from quantum mechanics to information theory, and even older fields use probability now that the presence of 'noise' is officially admitted. The newer aspects of many fields start with the admission of uncertainty." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"The field of 'information theory' began by using the old hardware paradigm of transportation of data from point to point." (Marshall McLuhan & Eric McLuhan, Laws of Media: The New Science, 1988)

"Without an understanding of causality there can be no theory of communication. What passes as information theory today is not communication at all, but merely transportation." (Marshall McLuhan & Eric McLuhan, "Laws of Media: The New Science", 1988)

"If quantum communication and quantum computation are to flourish, a new information theory will have to be developed." (Hans Christian von Baeyer, "Information, The New Language of Science", 2003)

"In fact, an information theory that leaves out the issue of noise turns out to have no content." (Hans Christian von Baeyer, "Information, The New Language of Science", 2003)

"In an information economy, entrepreneurs master the science of information in order to overcome the laws of the purely physical sciences. They can succeed because of the surprising power of the laws of information, which are conducive to human creativity. The central concept of information theory is a measure of freedom of choice. The principle of matter, on the other hand, is not liberty but limitation - it has weight and occupies space." (George Gilder, "Knowledge and Power: The Information Theory of Capitalism and How it is Revolutionizing our World", 2013)

"Information theory leads to the quantification of the information content of the source, as denoted by entropy, the characterization of the information-bearing capacity of the communication channel, as related to its noise characteristics, and consequently the establishment of the relationship between the information content of the source and the capacity of the channel. In short, information theory provides a quantitative measure of the information contained in message signals and help determine the capacity of a communication system to transfer this information from source to sink over a noisy channel in a reliable fashion." (Ali Grami, "Information Theory", 2016)

🕸Systems Engineering: Systems Thinking (Just the Quotes)

"A systems approach begins when first you see the world through the eyes of another." (C West Churchman, "The Systems Approach", 1968) 

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971) 

“The notion of ‘system’ has gained central importance in contemporary science, society and life. In many fields of endeavor, the necessity of a ‘systems approach’ or ‘systems thinking’ is emphasized, new professions called ‘systems engineering’, ‘systems analysis’ and the like have come into being, and there can be little doubt that this this concept marks a genuine, necessary, and consequential development in science and world-view.” (Ervin László, “Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary Thought”, 1972)

"A company is a multidimensional system capable of growth, expansion, and self-regulation. It is, therefore, not a thing but a set of interacting forces. Any theory of organization must be capable of reflecting a company's many facets, its dynamism, and its basic orderliness. When company organization is reviewed, or when reorganizing a company, it must be looked upon as a whole, as a total system." (Albert Low, "Zen and Creative Management", 1976)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"Systems thinking is a special form of holistic thinking - dealing with wholes rather than parts. One way of thinking about this is in terms of a hierarchy of levels of biological organization and of the different 'emergent' properties that are evident in say, the whole plant (e.g. wilting) that are not evident at the level of the cell (loss of turgor). It is also possible to bring different perspectives to bear on these different levels of organization. Holistic thinking starts by looking at the nature and behaviour of the whole system that those participating have agreed to be worthy of study. This involves: (i) taking multiple partial views of 'reality' […] (ii) placing conceptual boundaries around the whole, or system of interest and (iii) devising ways of representing systems of interest." (C J Pearson and R L Ison, "Agronomy of Grassland Systems", 1987) 

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990)

"Systems philosophy brings forth a reorganization of ways of thinking. It creates a new worldview, a new paradigm of perception and explanation, which is manifested in integration, holistic thinking, purpose-seeking, mutual causality, and process-focused inquiry.” (Béla H. Bánáthy, "Systems Design of Education”, 1991)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem … create a shared social reality […] a shared understanding of the problem and potential solutions … to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. […] Nourishing the community means nourishing those relationships." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"[...] information feedback about the real world not only alters our decisions within the context of existing frames and decision rules but also feeds back to alter our mental models. As our mental models change we change the structure of our systems, creating different decision rules and new strategies. The same information, processed and interpreted by a different decision rule, now yields a different decision. Altering the structure of our systems then alters their patterns of behavior. The development of systems thinking is a double-loop learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view and then redesign our policies and institutions accordingly." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)

"Systems thinking is based on the theory that a system is, in essence, circular. Using a systems approach in your strategic management, therefore, provides a circular implementing structure that can evolve, with continuously improving, self-checking, and learning capabilities [...]" (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"The systems approach, on the other hand, provides an expanded structural design of organizations as living systems that more accurately reflects reality." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"This is what systems thinking is all about: the idea of building an organization in which each piece, and partial solution of the organization has the fit, alignment, and integrity with your overall organization as a system, and its outcome of serving the customer." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"True systems thinking, on the other hand, studies each problem as it relates to the organization’s objectives and interaction with its entire environment, looking at it as a whole within its universe. Taking your organization from a partial systems to a true systems state requires effective strategic management and backward thinking." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems thinking is a mental discipline and framework for seeing patterns and interrelationships. It is important to see organizational systems as a whole because of their complexity. Complexity can overwhelm managers, undermining confidence. When leaders can see the structures that underlie complex situations, they can facilitate improvement. But doing that requires a focus on the big picture." (Richard L Daft, "The Leadership Experience", 2008)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"Deep change in mental models, or double-loop learning, arises when evidence not only alters our decisions within the context of existing frames, but also feeds back to alter our mental models. As our mental models change, we change the structure of our systems, creating different decision rules and new strategies. The same information, interpreted by a different model, now yields a different decision. Systems thinking is an iterative learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view, reinventing our policies and institutions accordingly." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"There exists an alternative to reductionism for studying systems. This alternative is known as holism. Holism considers systems to be more than the sum of their parts. It is of course interested in the parts and particularly the networks of relationships between the parts, but primarily in terms of how they give rise to and sustain in existence the new entity that is the whole whether it be a river system, an automobile, a philosophical system or a quality system." (Michael C. Jackson, "Systems Thinking: Creative Holism for Manager", 2003) 

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"A systems approach is one that focuses on the system as a whole, specifically linking value judgments (what is desired) and design decisions (what is feasible). A true systems approach means that the design process includes the 'problem' as well as the solution. The architect seeks a joint problem–solution pair and understands that the problem statement is not fixed when the architectural process starts. At the most fundamental level, systems are collections of different things that together produce results unachievable by the elements alone."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Taking a systems approach means paying close attention to results, the reasons we build a system. Architecture must be grounded in the client’s/user’s/customer’s purpose. Architecture is not just about the structure of components. One of the essential distinguishing features of architectural design versus other sorts of engineering design is the degree to which architectural design embraces results from the perspective of the client/user/customer. The architect does not assume some particular problem formulation, as 'requirements'  is fixed. The architect engages in joint exploration, ideally directly with the client/user/customer, of what system attributes will yield results worth paying for."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Systems thinking focuses on optimizing for the whole, looking at the overall flow of work, identifying what the largest bottleneck is today, and eliminating it." (Matthew Skelton & Manuel Pais, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

More on "Systems Thinking" at the-web-of-knowledge.blogspot.com.

29 December 2014

🕸Systems Engineering: Cognitive Maps (Just the Quotes)

"[…] learning consists not in stimulus-response connections but in the building up in the nervous system of sets which function like cognitive maps […] such cognitive maps may be usefully characterized as varying from a narrow strip variety to a broader comprehensive variety." (Edward C Tolman, "Cognitive maps in rats and men", 1948)

"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)

"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […]  a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)

"The concepts a person uses are represented as points, and the causal links between these concepts are represented as arrows between these points. This gives a pictorial representation of the causal assertions of a person as a graph of points and arrows. This kind of representation of assertions as a graph will be called a cognitive map. The policy alternatives, all of the various causes and effects, the goals, and the ultimate utility of the decision maker can all be thought of as concept variables, and represented as points in the cognitive map. The real power of this approach ap pears when a cognitive map is pictured in graph form; it is then relatively easy to see how each of the concepts and causal relation ships relate to each other, and to see the overall structure of the whole set of portrayed assertions." (Robert Axelrod, "The Cognitive Mapping Approach to Decision Making" [in "Structure of Decision: The Cognitive Maps of Political Elites"], 1976)

"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)

"A fuzzy cognitive map or FCM draws a causal picture. It ties facts and things and processes to values and policies and objectives. And it lets you predict how complex events interact and play out. [...] Neural nets give a shortcut to tuning an FCM. The trick is to let the fuzzy causal edges change as if they were synapses in a neural net. They cannot change with the same math laws because FCM edges stand for causal effect not signal flow. We bombard the FCM nodes with real data. The data state which nodes are on or off and to which degree at each moment in time. Then the edges grow among the nodes."  (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Under the label 'cognitive maps', mental models have been conceived of as the mental representation of spatial aspects of the environment. A mental model, in this sense, comprises the topology of an area, including relevant districts, landmarks, and paths." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems."  (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"When an individual uses causal mapping to help clarify their own thinking, we call this technique cognitive mapping, because it is related to personal thinking or cognition. When a group maps their own ideas, we call it oval mapping, because we often use oval-shaped cards to record individuals’ ideas so that they can be arranged into a group’s map. Cognitive maps and oval maps can be used to create a strategic plan, because the maps include goals, strategies and actions, just like strategic plans." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

27 December 2014

🕸Systems Engineering: Limitations (Just the Quotes)

"From a more general philosophical perspective we can say that we wish to model complex systems because we want to understand them better.  The main requirement for our models accordingly shifts from having to be correct to being rich in information.  This does not mean that the relationship between the model and the system itself becomes less important, but the shift from control and prediction to understanding does have an effect on our approach to complexity: the evaluation of our models in terms of performance can be deferred. Once we have a better understanding of the dynamics of complexity, we can start looking for the similarities and differences between different complex systems and thereby develop a clearer understanding of the strengths and limitations of different models." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The very essence of mass communication theory is a simple but all-embracing expression of technological determinism, since the essential features depend on what certain technologies have made possible, certain technologies have made possible, especially the following: communication at a distance, the multiplication and simultaneous distribution of diverse ‘messages’, the enormous capacity and speed of carriers, and the limitations on response. There is no escaping the implication that public communication as practised in modern societies is profoundly shaped by these general features." (Denis McQuail, "McQuail's Reader in Mass Communication Theory", 2002)

"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, "Chaos: A Program Collection for the PC", 2008)

"We are beginning to see the entire universe as a holographically interlinked network of energy and information, organically whole and self-referential at all scales of its existence. We, and all things in the universe, are non-locally connected with each other and with all other things in ways that are unfettered by the hitherto known limitations of space and time." (Ervin László, "Cosmos: A Co-creator's Guide to the Whole-World", 2010)

"Cyberneticists argue that positive feedback may be useful, but it is inherently unstable, capable of causing loss of control and runaway. A higher level of control must therefore be imposed upon any positive feedback mechanism: self-stabilising properties of a negative feedback loop constrain the explosive tendencies of positive feedback. This is the starting point of our journey to explore the role of cybernetics in the control of biological growth. That is the assumption that the evolution of self-limitation has been an absolute necessity for life forms with exponential growth." (Tony Stebbing, "A Cybernetic View of Biological Growth: The Maia Hypothesis", 2011)

"In an information economy, entrepreneurs master the science of information in order to overcome the laws of the purely physical sciences. They can succeed because of the surprising power of the laws of information, which are conducive to human creativity. The central concept of information theory is a measure of freedom of choice. The principle of matter, on the other hand, is not liberty but limitation - it has weight and occupies space." (George Gilder, "Knowledge and Power: The Information Theory of Capitalism and How it is Revolutionizing our World", 2013)

🕸Systems Engineering: Similarity (Just the Quotes)

"Symmetry is evidently a kind of unity in variety, where a whole is determined by the rhythmic repetition of similar." (George Santayana, "The Sense of Beauty", 1896)

"To apply the category of cause and effect means to find out which parts of nature stand in this relation. Similarly, to apply the gestalt category means to find out which parts of nature belong as parts to functional wholes, to discover their position in these wholes, their degree of relative independence, and the articulation of larger wholes into sub-wholes." (Kurt Koffka, 1931)

"By a model we thus mean any physical or chemical system which has a similar relation-structure to that of the process it imitates. By ’relation-structure’ I do not mean some obscure non-physical entity which attends the model, but the fact that it is a physical working model which works in the same way as the process it parallels, in the aspects under consideration at any moment." (Kenneth Craik, "The Nature of Explanation", 1943)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12" (4), 1945)

"Industrial production, the flow of resources in the economy, the exertion of military effort in a war theater-all are complexes of numerous interrelated activities. Differences may exist in the goals to be achieved, the particular processes involved, and the magnitude of effort. Nevertheless, it is possible to abstract the underlying essential similarities in the management of these seemingly disparate systems." (George Dantzig, "Linear programming and extensions", 1963) 

"System' is the concept that refers both to a complex of interdependencies between parts, components, and processes, that involves discernible regularities of relationships, and to a similar type of interdependency between such a complex and its surrounding environment." (Talcott Parsons, "Systems Analysis: Social Systems", 1968)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic" (that is fixed) rules" (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order" (a pattern) within disorder" (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting. " (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"From a more general philosophical perspective we can say that we wish to model complex systems because we want to understand them better.  The main requirement for our models accordingly shifts from having to be correct to being rich in information.  This does not mean that the relationship between the model and the system itself becomes less important, but the shift from control and prediction to understanding does have an effect on our approach to complexity: the evaluation of our models in terms of performance can be deferred. Once we have a better understanding of the dynamics of complexity, we can start looking for the similarities and differences between different complex systems and thereby develop a clearer understanding of the strengths and limitations of different models." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder. " (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"Diverse groups of problem solvers outperformed the groups of the best individuals at solving complex problems. The reason: the diverse groups got stuck less often than the smart individuals, who tended to think similarly." (Scott E Page, [interview in The New York Times] 2008)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems. " (Albert-László Barabási, "Network Science", 2016)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

See also the quotes on Similarity in Graphical Representation series

26 December 2014

🕸Systems Engineering: Perfection (Just the Quotes)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"Knowledge is not something which exists and grows in the abstract. It is a function of human organisms and of social organization. Knowledge, that is to say, is always what somebody knows: the most perfect transcript of knowledge in writing is not knowledge if nobody knows it. Knowledge however grows by the receipt of meaningful information - that is, by the intake of messages by a knower which are capable of reorganising his knowledge." (Kenneth E Boulding, "General Systems Theory: The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"The hardest problems we have to face do not come from philosophical questions about whether brains are machines or not. There is not the slightest reason to doubt that brains are anything other than machines with enormous numbers of parts that work in perfect accord with physical laws. As far as anyone can tell, our minds are merely complex processes. The serious problems come from our having had so little experience with machines of such complexity that we are not yet prepared to think effectively about them." (Marvin Minsky, 1986)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Skewness is a measure of symmetry. For example, it's zero for the bell-shaped normal curve, which is perfectly symmetric about its mean. Kurtosis is a measure of the peakedness, or fat-tailedness, of a distribution. Thus, it measures the likelihood of extreme values." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"Swarm systems generate novelty for three reasons: (1) They are 'sensitive to initial conditions' - a scientific shorthand for saying that the size of the effect is not proportional to the size of the cause - so they can make a surprising mountain out of a molehill. (2) They hide countless novel possibilities in the exponential combinations of many interlinked individuals. (3) They don’t reckon individuals, so therefore individual variation and imperfection can be allowed. In swarm systems with heritability, individual variation and imperfection will lead to perpetual novelty, or what we call evolution." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Yet, with the discovery of the butterfly effect in chaos theory, it is now understood that there is some emergent order over time even in weather occurrence, so that weather prediction is not next to being impossible as was once thought, although the science of meteorology is far from the state of perfection." (Peter Baofu, "The Future of Complexity: Conceiving a Better Way to Understand Order and Chaos", 2007)

"The word ‘symmetry’ conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Because the perfect system cannot be designed, there will always be weak spots that human ingenuity and resourcefulness can exploit." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

See also: Failure, Good, Bad, Ugly


🕸Systems Engineering: Emergence (Just the Quotes)

"[Hierarchy is] the principle according to which entities meaningfully treated as wholes are built up of smaller entities which are themselves wholes […] and so on. In hierarchy, emergent properties denote the levels." (Peter Checkland, "Systems Thinking, Systems Practice", 1981)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof Capra, "The web of life: a new scientific understanding of living systems", 1996)

"It may not be obvious at first, but the study of emergence and model-building go hand in hand. The essence of model-building is shearing away detail to get at essential elements. A model, by concentrating on selected aspects of the world, makes possible the prediction and planning that reveal new possibilities. That is exactly the problem we face in trying to develop a scientific understanding of emergence." (John H Holland, "Emergence" , Philosophica 59, 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"Emergence is not really mysterious, although it may be complex. Emergence is brought about by the interactions between the parts of a system. The galloping horse illusion depends upon the persistence of the human retina/brain combination, for instance. Elemental gases bond in combination by sharing outer electrons, thereby altering the appearance and behavior of the combination. In every case of emergence, the source is interaction between the parts - sometimes, as with the brain, very many parts - so that the phenomenon defies simple explanation." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Emergence is the phenomenon of properties, capabilities and behaviours evident in the whole system that are not exclusively ascribable to any of its parts." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Another typical feature of theories of emergence is the layered view of nature. On this view, all things in nature belong to a certain level of existence, each according to its characteristic properties. These levels of existence constitute a hierarchy of increasing complexity that also corresponds to their order of appearance in the course of evolution." (Markus Eronen, "Emergence in the Philosophy of Mind", 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"The beauty of nature insists on taking its time. Everything is prepared. Nothing is rushed. The rhythm of emergence is a gradual, slow beat; always inching its way forward, change remains faithful to itself until the new unfolds in the full confidence of true arrival. Because nothing is abrupt, the beginning of spring nearly always catches us unawares. It is there before we see it; and then we can look nowhere without seeing it. (John O'Donohue, "To Bless the Space Between Us: A Book of Blessings", 2008)

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"The notion of emergence is used in a variety of disciplines such as evolutionary biology, the philosophy of mind and sociology, as well as in computational and complexity theory. It is associated with non-reductive naturalism, which claims that a hierarchy of levels of reality exist. While the emergent level is constituted by the underlying level, it is nevertheless autonomous from the constituting level. As a naturalistic theory, it excludes non-natural explanations such as vitalistic forces or entelechy. As non-reductive naturalism, emergence theory claims that higher-level entities cannot be explained by lower-level entities." (Martin Neumann, "An Epistemological Gap in Simulation Technologies and the Science of Society", 2011)

"System theorists know that it's easy to couple simple-to-understand systems into a ‘super system’ that's capable of displaying behavioral modes that cannot be seen in any of its constituent parts. This is the process called ‘emergence’." (John L Casti, [interview with Austin Allen], 2012)

"Every system that has existed emerged somehow, from somewhere, at some point. Complexity science emphasizes the study of how systems evolve through their disorganized parts into an organized whole." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Things evolve to evolve. Evolutionary processes are the linchpin of change. These processes of discovery represent a complexity of simple systems that flux in perpetual tension as they teeter at the edge of chaos. This whirlwind of emergence is responsible for the spontaneous order and higher, organized complexity so noticeable in biological evolution - one–celled critters beefing up to become multicellular organisms." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as 'emergence', is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

More quotes on "Emergence" at the-web-of-knowledge.blogspot.com.

25 December 2014

🕸Systems Engineering: Connectedness (Just the Quotes)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"A NETWORK is a collection of connected lines, each of which indicates the movement of some quantity between two locations. Generally, entrance to a network is via a source (the starting point) and exit from a network is via a sink (the finishing point); the lines which form the network are called links (or arcs), and the points at which two or more links meet are called nodes." (Cecil W Lowe, "Critical Path Analysis by Bar Chart", 1966)

"The essential vision of reality presents us not with fugitive appearances but with felt patterns of order which have coherence and meaning for the eye and for the mind. Symmetry, balance and rhythmic sequences express characteristics of natural phenomena: the connectedness of nature - the order, the logic, the living process. Here art and science meet on common ground." (Gyorgy Kepes, "The New Landscape: In Art and Science", 1956)

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 1979)

"All certainty in our relationships with the world rests on acknowledgement of causality. Causality is a genetic connection of phenomena through which one thing (the cause) under certain conditions gives rise to, causes something else (the effect). The essence of causality is the generation and determination of one phenomenon by another." (Alexander Spirkin, "Dialectical Materialism", 1983)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"Nodes and connectors comprise the structure of a network. In contrast, an ecology is a living organism. It influences the formation of the network itself." (George Siemens, "Knowing Knowledge", 2006)

"If a network is solely composed of neighborhood connections, information must traverse a large number of connections to get from place to place. In a small-world network, however, information can be transmitted between any two nodes using, typically, only a small number of connections. In fact, just a small percentage of random, long-distance connections is required to induce such connectivity. This type of network behavior allows the generation of 'six degrees of separation' type results, whereby any agent can connect to any other agent in the system via a path consisting of only a few intermediate nodes." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)

"Networks may also be important in terms of view. Many models assume that agents are bunched together on the head of a pin, whereas the reality is that most agents exist within a topology of connections to other agents, and such connections may have an important influence on behavior. […] Models that ignore networks, that is, that assume all activity takes place on the head of a pin, can easily suppress some of the most interesting aspects of the world around us. In a pinhead world, there is no segregation, and majority rule leads to complete conformity - outcomes that, while easy to derive, are of little use." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)

"Complexity theory embraces things that are complicated, involve many elements and many interactions, are not deterministic, and are given to unexpected outcomes. […] A fundamental aspect of complexity theory is the overall or aggregate behavior of a large number of items, parts, or units that are entangled, connected, or networked together. […] In contrast to classical scientific methods that directly link theory and outcome, complexity theory does not typically provide simple cause-and-effect explanations." (Robert E Gunther et al, "The Network Challenge: Strategy, Profit, and Risk in an Interlinked World", 2009)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)

"We are beginning to see the entire universe as a holographically interlinked network of energy and information, organically whole and self-referential at all scales of its existence. We, and all things in the universe, are non-locally connected with each other and with all other things in ways that are unfettered by the hitherto known limitations of space and time." (Ervin László, "Cosmos: A Co-creator's Guide to the Whole-World", 2010)

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 2013) 

🕸Systems Engineering: The Good (Just the Quotes)

"Plasticity, then, in the wide sense of the word, means the possession of a structure weak enough to yield to an influence, but strong enough not to yield all at once. Each relatively stable phase of equilibrium in such a structure is marked by what we may call a new set of habits." (William James, "The Laws of Habit", 1887)

"The engineer must be able not only to design, but to execute. A draftsman may be able to design, but unless he is able to execute his designs to successful operation he cannot be classed as an engineer. The production engineer must be able to execute his work as he has planned it. This requires two qualifications in addition to technical engineering ability: He must know men, and he must have creative ability in applying good statistical, accounting, and 'system' methods to any particular production work he may undertake." (Hugo Diemer, "Industrial Engineering", 1905)

"A system is said to be coherent if every fact in the system is related every other fact in the system by relations that are not merely conjunctive. A deductive system affords a good example of a coherent system." (Lizzie S Stebbing, "A modern introduction to logic", 1930)

"Stability is commonly thought of as desirable, for its presence enables the system to combine of flexibility and activity in performance with something of permanence. Behaviour that is goal-seeking is an example of behaviour that is stable around a state of equilibrium. Nevertheless, stability is not always good, for a system may persist in returning to some state that, for other reasons, is considered undesirable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"The idea of knowledge as an improbable structure is still a good place to start. Knowledge, however, has a dimension which goes beyond that of mere information or improbability. This is a dimension of significance which is very hard to reduce to quantitative form. Two knowledge structures might be equally improbable but one might be much more significant than the other." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"Perhaps the most important single characteristic of modern organizational cybernetics is this: That in addition to concern with the deleterious impacts of rigidly-imposed notions of what constitutes the application of good 'principles of organization and management' the organization is viewed as a subsystem of a larger system(s), and as comprised itself of functionally interdependent subsystems." (Richard F Ericson, "Organizational cybernetics and human values", 1969)  

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Reliable information processing requires the existence of a good code or language, i.e., a set of rules that generate information at a given hierarchical level, and then compress it for use at a higher cognitive level. To accomplish this, a language should strike an optimum balance between variety (stochasticity) and the ability to detect and correct errors" (memory).(John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"System dynamics models are not derived statistically from time-series data. Instead, they are statements about system structure and the policies that guide decisions. Models contain the assumptions being made about a system. A model is only as good as the expertise which lies behind its formulation. A good computer model is distinguished from a poor one by the degree to which it captures the essence of a system that it represents. Many other kinds of mathematical models are limited because they will not accept the multiple-feedback-loop and nonlinear nature of real systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy inference methods apply these rules to data and infer a solution. Neural networks are very efficient at learning heuristics from data. They are 'good problem solvers' when past data are available. Both fuzzy systems and neural networks are universal approximators in a sense, that is, for a given continuous objective function there will be a fuzzy system and a neural network which approximate it to any degree of accuracy." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Our simplistic cause-effect analyses, especially when coupled with the desire for quick fixes, usually lead to far more problems than they solve - impatience and knee-jerk reactions included. If we stop for a moment and take a good look our world and its seven levels of complex and interdependent systems, we begin to understand that multiple causes with multiple effects are the true reality, as are circles of causality-effects." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"The internet model has many lessons for the new economy but perhaps the most important is its embrace of dumb swarm power. The aim of swarm power is superior performance in a turbulent environment. When things happen fast and furious, they tend to route around central control. By interlinking many simple parts into a loose confederation, control devolves from the center to the lowest or outermost points, which collectively keep things on course. A successful system, though, requires more than simply relinquishing control completely to the networked mob." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"An equilibrium is not always an optimum; it might not even be good. This may be the most important discovery of game theory." (Ivar Ekeland, "Le meilleur des mondes possibles" ["The Best of All Possible Worlds"], 2000)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] fiding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"All models are mental projections of our understanding of processes and feedbacks of systems in the real world. The general approach is that models are as good as the system upon which they are based. Models should be designed to answer specific questions and only incorporate the necessary details that are required to provide an answer." (Hördur V Haraldsson & Harald U Sverdrup, "Finding Simplicity in Complexity in Biogeochemical Modelling", 2004)

"The laws of thermodynamics tell us something quite different. Economic activity is merely borrowing low-entropy energy inputs from the environment and transforming them into temporary products and services of value. In the transformation process, often more energy is expended and lost to the environment than is embedded in the particular good or service being produced." (Jeremy Rifkin, "The Third Industrial Revolution", 2011)

✨Performance Management: Mastery (Just the Quotes)

"Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, but we rather have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not an act but a habit." (Aristotle)

"With regard to excellence, it is not enough to know, but we must try to have and use it." (Aristotel, "Nochomachean Ethics", cca. 340 BC)

"It takes a long time to bring excellence to maturity." (Publilius Syrus, "Moral Sayings", cca. 1st century BC)

"One has attained to mastery when one neither goes wrong nor hesitates in the performance." (Friedrich Nietzsche, "Thoughts on the Prejudices of Morality", 1881)

"Order and simplification are the first steps toward the mastery of a subject - the actual enemy is the unknown." (Thomas Mann, "The Magic Mountain", 1924)

"To improve is to change; to be perfect is to change often." (Winston Churchill, [Speech, House of Commons] 1925)

"Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"Civilization is that mode of conduct which points out to man the path of duty. Performance of duty and observance of morality are convertible terms. To observe morality is to attain mastery over our mind and our passions. So doing, we know ourselves." (Mahatma Gandhi, "Hindu Dharma", 1950)

"Leaders value learning and mastery, and so do people who work for leaders. Leaders make it clear that there is no failure, only mistakes that give us feedback and tell us what to do next." (Warren G Bennis, Training and Development Journal, 1984)

"No talent in management is worth more than the ability to master facts - not just any facts, but the ones that provide the best answers. Mastery thus involves knowing what facts you want; where to dig for them; how to dig; how to process the mined ore; and how to use the precious nuggets of information that are finally in your hand. The process can be laborious - which is why it is so often botched." (Robert Heller, "The Supermanagers", 1984)

"The source of good management is found in the imagination of leaders, persons who form new visions and manifest them with a high degree of craft. The blending of vision and craft communicates the purpose. In the arts, people who do that well are masters. In business, they are leaders." (Henry M. Boettinger, Harvard Business Review on Human Relations, 1986)

"People with a high level of personal mastery are able to consistently realize the results that matter most deeply to them-in effect, they approach their life as an artist would approach a work of art. The do that by becoming committed to their own lifelong learning." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Personal mastery is the discipline of continually clarifying and deepening our personal vision, of focusing our energies, of developing patience, and of seeing reality objectively." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"The discipline of personal mastery [...] starts with clarifying the things that really matter to us (and) living our lives in the service of our highest aspirations." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Mastery means responsibility, ability to respond in real time to the need of the moment." (Stephen Nachmanovitch, "Free Play: Improvisation in Life and Art", 1991

"At the heart of it, mastery is practice. Mastery is staying on the path." (George Leonard, "Mastery: The Keys to Success and Long-Term Fulfillment", 1992)

"Find the heart of it. Make the complex simple, and you can achieve mastery." (Dan Millman, "Living on Purpose: Straight Answers to Life's Tough Questions", 2000)

"Change always implies abandonment. What you're abandoning is an old way of doing things. You're abandoning it because it's old, because time has made it no longer the best way. But it is also (again because it's old) a familiar way. And more important, it is an approach that people have mastered. So the change you are urging upon your people requires them to abandon their mastery of the familiar, and to become novices once again, to become rank beginners at something with self-definitional importance." (Tom DeMarco, "Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency", 2001)

"Mastery is an elusive concept. You never know when you achieve it absolutely and it may not help you to feel you've attained it. We can recognize it more readily in others than we can in ourselves. We have to discover our own definition of it." (Twyla Tharp, 'The Creative Habit: Learn It and Use It for Life", 2003)

"Leaders should be aware of how their mental models affect their thinking and may cause 'blind spots' that limit understanding. Becoming aware of assumptions is a first step toward shifting one’s mental model and being able to see the world in new and different ways. Four key issues important to expanding and developing a leader’s mind are independent thinking, open-mindedness, systems thinking, and personal mastery." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"Mastery is not a function of genius or talent. It is a function of time and intense focus applied to a particular field of knowledge." (Robert Greene, "Mastery" 2012)

"Models are formal structures represented in mathematics and diagrams that help us to understand the world. Mastery of models improves your ability to reason, explain, design, communicate, act, predict, and explore." (Scott E Page, "The Model Thinker", 2018)

"Art calls for complete mastery of techniques, developed by reflection within the soul." (Bruce Lee)

"In the pursuit of excellence, there is no finish line." (Robert H Farman)

"Only one who devotes himself to a cause with his whole strength and soul can be a true master. For this reason mastery demands all of a person." (Albert Einstein)

"The performance of public duty is not the whole of what makes a good life; there is also the pursuit of private excellence." (Bertrand Russell)

🕸Systems Engineering: Sensitivity (Just the Quotes)

"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (Jules H Poincaré, "Science and Method", 1908)

"The predictions of physical theories for the most part concern situations where initial conditions can be precisely specified. If such initial conditions are not found in nature, they can be arranged." (Anatol Rapoport, "The Search for Simplicity", 1956)

"[...] the influence of a single butterfly is not only a fine detail - it is confined to a small volume. Some of the numerical methods which seem to be well adapted for examining the intensification of errors are not suitable for studying the dispersion of errors from restricted to unrestricted regions. One hypothesis, unconfirmed, is that the influence of a butterfly's wings will spread in turbulent air, but not in calm air." (Edward N Lorenz, [talk] 1972)

"Everywhere […] in the Universe, we discern that closed physical systems evolve in the same sense from ordered states towards a state of complete disorder called thermal equilibrium. This cannot be a consequence of known laws of change, since […] these laws are time symmetric- they permit […] time-reverse. […] The initial conditions play a decisive role in endowing the world with its sense of temporal direction. […] some prescription for initial conditions is crucial if we are to understand […]" (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"How surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values." (Steven Weinberg, "Life in the Quantum Universe", Scientific American, 1995)

"Unlike classical mathematics, net math exhibits nonintuitive traits. In general, small variations in input in an interacting swarm can produce huge variations in output. Effects are disproportional to causes - the butterfly effect." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Swarm systems generate novelty for three reasons: (1) They are 'sensitive to initial conditions' - a scientific shorthand for saying that the size of the effect is not proportional to the size of the cause - so they can make a surprising mountain out of a molehill. (2) They hide countless novel possibilities in the exponential combinations of many interlinked individuals. (3) They don’t reckon individuals, so therefore individual variation and imperfection can be allowed. In swarm systems with heritability, individual variation and imperfection will lead to perpetual novelty, or what we call evolution." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Białynicki-Birula & Iwona Białynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"Yet, with the discovery of the butterfly effect in chaos theory, it is now understood that there is some emergent order over time even in weather occurrence, so that weather prediction is not next to being impossible as was once thought, although the science of meteorology is far from the state of perfection." (Peter Baofu, "The Future of Complexity: Conceiving a Better Way to Understand Order and Chaos", 2007)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The 'butterfly effect' is at most a hypothesis, and it was certainly not Lorenz’s intention to change it to a metaphor for the importance of small event. […] Dynamical systems that exhibit sensitive dependence on initial conditions produce remarkably different solutions for two initial values that are close to each other. Sensitive dependence on initial conditions is one of the properties to exhibit chaotic behavior. In addition, at least one further implicit assumption is that the system is bounded in some finite region, i.e., the system cannot blow up. When one uses expanding dynamics, a way of pull-back of too much expanded phase volume to some finite domain is necessary to get chaos." (Péter Érdi, "Complexity Explained", 2008)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly - effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

More quotes on the "Sensitivity of initial conditions" (aka "The Butterfly Effect") at the-web-of-knowledge.blogspot.com.
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.