"Graphic charts have often been thought to be tools of those alone who are highly skilled in mathematics, but one needs to have a knowledge of only eighth-grade arithmetic to use intelligently even the logarithmic or ratio chart, which is considered so difficult by those unfamiliar with it. […] If graphic methods are to be most effective, those who are unfamiliar with charts must give some attention to their fundamental structure. Even simple charts may be misinterpreted unless they are thoroughly understood. For instance, one is not likely to read an arithmetic chart correctly unless he also appreciates the significance of a logarithmic chart." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)
"Structured information is any type of information that is arranged to show relationships between the minute, individual particles" (bits) of information and the final presentation of this information in a logical arrangement with continuity from beginning to end." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)
"Frequently we can increase the informativeness of a graph by removing structure from the data once we have identified it, so that subsequent plots are free of its dominating influence and can help us see finer structure or subtler effects. This usually means" (l) partitioning the data, or" (2) plotting differences or ratios, or" (3) fitting a model and taking the residuals as a new set of data for further study." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"The truth is that one display is better than another if it leads to more understanding. Often a simpler display, one that tries to accomplish less at one time, succeeds in conveying more insight. In order to understand complicated or subtle structure in the data we should be prepared to look at complicated displays when necessary, but to see any particular type of structure we should use the simplest display that shows it." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"In order to be easily understood, a display of information must have a logical structure which is appropriate for the user's knowledge and needs, and this structure must be clearly represented visually. In order to indicate structure, it is necessary to be able to emphasize, divide and relate items of information. Visual emphasis can be used to indicate a hierarchical relationship between items of information, as in the case of systems of headings and subheadings for example. Visual separation of items can be used to indicate that they are different in kind or are unrelated functionally, and similarly a visual relationship between items will imply that they are of a similar kind or bear some functional relation to one another. This kind of visual 'coding' helps the reader to appreciate the extent and nature of the relationship between items of information, and to adopt an appropriate scanning strategy." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)
"One important aspect of reality is improvisation; as a result of special structure in a set of data, or the finding of a visualization method, we stray from the standard methods for the data type to exploit the structure or the finding." (William S Cleveland, "Visualizing Data", 1993)
"The logarithm is one of many transformations that we can apply to univariate measurements. The square root is another. Transformation is a critical tool for visualization or for any other mode of data analysis because it can substantially simplify the structure of a set of data. For example, transformation can remove skewness toward large values, and it can remove monotone increasing spread. And often, it is the logarithm that achieves this removal." (William S Cleveland, "Visualizing Data", 1993)
"A good graph displays relationships and structures that are difficult to detect by merely looking at the data." (Gerald van Belle, "Statistical Rules of Thumb", 2002)
"Stacked bar graphs do not show data structure well. A trend in one of the stacked variables has to be deduced by scanning along the vertical bars. This becomes especially difficult when the categories do not move in the same direction." (Gerald van Belle, "Statistical Rules of Thumb", 2002)
"The content and context of the numerical data determines the most appropriate mode of presentation. A few numbers can be listed, many numbers require a table. Relationships among numbers can be displayed by statistics. However, statistics, of necessity, are summary quantities so they cannot fully display the relationships, so a graph can be used to demonstrate them visually. The attractiveness of the form of the presentation is determined by word layout, data structure, and design." (Gerald van Belle, "Statistical Rules of Thumb", 2002)
"A grammar of graphics facilitates coordinated activity in a set of relatively autonomous components. This grammar enables us to develop a system in which adding a graphic to a frame (say, a surface) requires no adjustments or changes in definitions other than the simple message 'add this graphic'. Similarly, we can remove graphics, transform scales, permute attributes, and make other alterations without redefining the basic structure."(Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)
"Merely drawing a plot does not constitute visualization. Visualization is about conveying important information to the reader accurately. It should reveal information that is in the data and should not impose structure on the data." (Robert Gentleman, "Bioinformatics and Computational Biology Solutions using R and Bioconductor", 2005)
"A diagram is a graphic shorthand. Though it is an ideogram, it is not necessarily an abstraction. It is a representation of something in that it is not the thing itself. In this sense, it cannot help but be embodied. It can never be free of value or meaning, even when it attempts to express relationships of formation and their processes. At the same time, a diagram is neither a structure nor an abstraction of structure." (Peter Eisenman, "Written Into the Void: Selected Writings", 1990-2004, 2007)
"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form" (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008)
"Tables work in a variety of situations because they convey large amounts of data in a condensed fashion. Use tables in the following situations:" (1) to structure data so the reader can easily pick out the information desired," (2) to display in a chart when the data contains too many variables or values, and" (3) to display exact values that are more important than a visual moment in time." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)
"Tables work in a variety of situations because they convey large amounts of data in a condensed fashion. Use tables in the following situations:" (1) to structure data so the reader can easily pick out the information desired," (2) to display in a chart when the data contains too many variables or values, and" (3) to display exact values that are more important than a visual moment in time." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)
"Models are formal structures represented in mathematics and diagrams that help us to understand the world. Mastery of models improves your ability to reason, explain, design, communicate, act, predict, and explore." (Scott E Page, "The Model Thinker", 2018)
"Data storytelling can be defined as a structured approach for communicating data insights using narrative elements and explanatory visuals." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)
"Beyond the design of individual charts, the sequence of data visualizations creates grammar within the exposition. Cohesive visualizations follow common narrative structures to fully express their message. Order matters. " (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)