09 December 2006

✏️Andy Kriebel - Collected Quotes

"A time series is a sequence of values, usually taken in equally spaced intervals. […] Essentially, anything with a time dimension, measured in regular intervals, can be used for time series analysis." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Calculating the percent change between two percentages is not completely inaccurate, but it can be very misleading. Instead, you should use the absolute change when you are working with percentages and want to show the difference between two points in time." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Data analysis is more than crunching numbers; it is about finding insights, identifying the unknown unknowns, and presenting the data in a simple yet deep enough way so that your audience can understand your insights and make decisions." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Heat maps are effective visualizations for seeing concentrations as well as patterns. Adding time series to a heat map can also reveal seasonality that may not be obvious otherwise." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Ideally, the charts are designed in a way that gives your audience clarity and lets them understand the key insights very quickly. Color choices, highlighting, annotations, and other ways of drawing attention to your findings help in the process. By leaving white or blank space around your charts, you are able to keep the focus of your audience on the key message rather than distracting or confusing them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Plotting numbers on a chart does not make you a data analyst. Knowing and understanding your data before you communicate it to your audience does."  (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Ranks do not explain how much one item varies from another. Ranked data is ordinal; that is, the data is categorical and has a sequence (e.g., who finished the race first, second, and third). That’s it! Ranked data can be used for showing the order of the data points. […] When working with ranked data, you cannot make inferences about the variance in the data; all you can say with certainty is which item is ranked higher than the others, not how much higher." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Simplicity for data visualization often focuses on minimizing the number of elements that do not add value to your display. These include borders, gridlines, axes lines, and boxes, which can easily distract from your core message. This recommendation also relates to the information itself. You should strive to create a visualization that focuses on specific aspects of the data, rather than including all fields and metrics but not saying much about any of them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Simplicity in design can be recognized in visualizations that are clear, easy to understand, uncluttered, and impactful. Nonessential items are removed from these visualizations so that the data stands out, giving it space and removing distractions. Simplicity in design pays careful attention to the overall layout and positioning of individual components, the balance of charts and text elements, and the choice of colors, fonts, and icons, as well as the clarity with which all of these elements communicate to the audience." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Smoothing is a technique that can be used to remove some of the variation in short-term data in favor of emphasizing long-term trends." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018) 

"Taking an average of an average (the original percentage) does not result in a weighted average, which takes into account the sample size […]." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"[…] the drawback of the box plot is that it tends to hide the values due to its design." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"To become a great data analyst, you must be able to identify and deal with incomplete data and work to identify the data quality and accuracy issues in a data set." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Using a question as a title is a great way to guide the audience. The question helps you ensure that your charts respond directly to the question and when they do not, you can remove them. And that is the main point: You need to answer the question. If the data is not conclusive, say so. Give an explanation that relates back to your title and close the loop so that your audience is informed and gets the complete picture included in your analysis." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Visually plotting time series data against a point in time reveals patterns relative to that period, thus allowing the reader to understand growth and decline before and after the given point in time." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"When using indexes in a data set, using an average aggregation is appropriate as long as you only use it at the individual region, month, and visitor type level (i.e., the lowest granularity of the data). You cannot use an average of the average to represent the total."  (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"When you are exploring your data, look for alternate views of the data; you just may find a more interesting insight."  (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

✏️Nicholas Strange - Collected Quotes

"All graphics by definition employ metaphors, but some are more metaphorical than others. Sometimes the metaphor escapes from its graphical cage, takes on a life of its own and provides exciting deception opportunities." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Arbitrary category sequence and misplaced pie chart emphasis lead to general confusion and weaken messages. Although this can be used for quite deliberate and targeted deceit, manipulation of the category axis only really comes into its own with techniques that bend the relationship between the data and the optics in a more calculated way. Many of these techniques are just twins of similar ruses on the value axis. but are none the less powerful for that." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Category definition and selection in the pre-graphical phase of communication offer varied manipulation opportunities. But once we get to designing the chart itself category distortion opportunities are even more attractive." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Deceit through cumulation is a bit of a golden Oldie, but still frequently used in some highly respectable publications." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"If you're really desperate to find some sort of correlation to add respectability to an otherwise unimpressive train of thought, you can always turn to the old trick of using two variables that are separated only by a logical or mathematical constant. Sounds complicated? So much the better." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"If you want to hide data, try putting it into a larger group and then use the average of the group for the chart. The basis of the deceit is the endearingly innocent assumption on the part of your readers that you have been scrupulous in using a representative average: one from which individual values do not deviate all that much. In scientific or statistical circles, where audiences tend to take less on trust, the 'quality' of the average (in terms of the scatter of the underlying individual figures) is described by the standard deviation, although this figure is itself an average." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Radar charts are almost always the result either of space-saving attempts or of doubtful theories about the desirability of 'symmetrical' plots, in which scores on all dimensions are similar, so giving an approximation to a circle. Their scales offer unlimited scope for manipulation in achieving this lunatic ambition." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"The donut, its spelling betrays its origins, is nearly always more deceit friendly than the pie, despite being modelled on a life-saving ring. This is because the hole destroys the second most important value- defining element, by hiding the slice angles in the middle." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"The fact that a statement is true doesn't necessarily mean that the argument upon which is based or the chart of which it forms the action title is itself sound." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"There are some chart types that occasionally appear in print but are so bad that they serve neither honesty nor deceit. Among these monuments to human ingenuity at the expense of common sense are the concentric donut and overlapping segments. The concentric donut is really just a bar or column chart bent back on itself to save space. However as anyone who has ever watched a two or four hundred metre race will know, to make sense of the order of arrival at the tape you have to stagger the start to take account of the bend in the track. Blithely ignoring this problem, the concentric donut uses to diminish the difference between the inner and the outer absolute values by anything up to 2.5 times." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"We need [graphic] techniques because figures do not speak for them. selves. Numbers alone seldom make a convincing case or polish their author's image - the twin goals of that other great mind bender, rhetoric. While rhetoric deals in qualitative argument, its quantitative equivalent is graphics. As rhetoric has declined in popularity, so graphics have risen along with our acceptance of quantitative arguments. In graphics, figures finally find their own means of expression." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"We tend automatically to think of all the categories represented on the horizontal axis of a column Chart as being equally important. They vary of course on the value axis. Otherwise, there would be little point in the chart, but there is somehow this feeling that they are in other respects similar members of a group. This convention can be put to good use to manipulate the message of the most boring bar or column chart." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"What distinguishes data tables from graphics is explicit comparison and the data selection that this requires. While a data table obviously also selects information, this selection is less focused than a chart's on a particular comparison. To the extent that some figures in a table are visually emphasised. say in colour or size and style of print. the table is well on its way to becoming a chart. If you're making no comparisons - because you have no particular message and so need no selection (in other words, if you are simply providing a database, number quarry or recycling facility) - tables are easier to use than charts." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

08 December 2006

✏️Noah Iliinsky - Collected Quotes


"For a visual to qualify as beautiful, it must be aesthetically pleasing, yes, but it must also be novel, informative, and efficient. [...] For a visual to truly be beautiful, it must go beyond merely being a conduit for information and offer some novelty: a fresh look at the data or a format that gives readers a spark of excitement and results in a new level of understanding. Well-understood formats (e.g., scatterplots) may be accessible and effective, but for the most part they no longer have the ability to surprise or delight us. Most often, designs that delight us do so not because they were designed to be novel, but because they were designed to be effective; their novelty is a byproduct of effectively revealing some new insight about the world." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"The key to the success of any visual, beautiful or not, is providing access to information so that the user may gain knowledge. A visual that does not achieve this goal has failed. Because it is the most important factor in determining overall success, the ability to convey information must be the primary driver of the design of a visual." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"A beautiful visualization has a clear goal, a message, or a particular perspective on the information that it is designed to convey. Access to this information should be as straightforward as possible, without sacrificing any necessary, relevant complexity. [...] Most importantly, beautiful visualizations reflect the qualities of the data that they represent, explicitly revealing properties and relationships inherent and implicit in the source data. As these properties and relationships become available to the reader, they bring new knowledge, insight, and enjoyment."  (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"The first requirement of a beautiful visualization is that it is novel, fresh, or unique. It is difficult (though not impossible) to achieve the necessary novelty using default formats. In most situations, well-defined formats have well-defined, rational conventions of use: line graphs for continuous data, bar graphs for discrete data, pie graphs for when you are more interested in a pretty picture than conveying knowledge." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"A persuasive visualization primarily serves the relationship between the designer and the reader. It is useful when the designer wishes to change the reader’s mind about something. It represents a very specific point of view, and advocates a change of opinion or action on the part of the reader. In this category of visualization, the data represented is specifically chosen for the purpose of supporting the designer’s point of view, and is presented carefully so as to convince the reader of same." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"All sorts of metaphorical interpretations are culturally ingrained. An astute designer will think about these possible interpretations and work with them, rather than against them." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"An informative visualization primarily serves the relationship between the reader and the data. It aims for a neutral presentation of the facts in such a way that will educate the reader (though not necessarily persuade him). Informative visualizations are often associated with broad data sets, and seek to distill the content into a manageably consumable form." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Bear in mind is that the use of color doesn’t always help. Use it sparingly and with a specific purpose in mind. Remember that the reader’s brain is looking for patterns, and will expect both recurrence itself and the absence of expected recurrence to carry meaning. If you’re using color to differentiate categorical data, then you need to let the reader know what the categories are. If the dimension of data you’re encoding isn’t significant enough to your message to be labeled or explained in some way - or if there is no dimension to the data underlying your use of difference colors - then you should limit your use so as not to confuse the reader." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Communication is the primary goal of data visualization. Any element that hinders - rather than helps - the reader, then, needs to be changed or removed: labels and tags that are in the way, colors that confuse or simply add no value, uncomfortable scales or angles. Each element needs to serve a particular purpose toward the goal of communicating and explaining information. Efficiency matters, because if you’re wasting a viewer’s time or energy, they’re going to move on without receiving your message." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Exploratory data visualizations are appropriate when you have a whole bunch of data and you’re not sure what’s in it. […] By contrast, explanatory data visualization is appropriate when you already know what the data has to say, and you are trying to tell that story to somebody else." (Noah Iliinsky & Julie Steele, "Designing Data Visualizations", 2011)

"In data visualization, the number one rule of thumb to bear is mind is: Function first, suave second." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Some people use infographic to refer to representations of information perceived as casual, funny, or frivolous, and visualization to refer to designs perceived to be more serious, rigorous, or academic." (Noah Iliinsky & Julie Steele, "Designing Data Visualizations", 2011)

"Practically speaking, this pattern and pattern-violation recognition has two major implications for design. The first is that readers will notice patterns and assume they are intentional, whether you planned for the patterns to exist or not. The second is that when they perceive patterns, readers will also expect pattern violations to be meaningful." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"The advantage of redundant encoding is that using more channels to get the same information into your brain can make acquisition of that information faster, easier, and more accurate." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"The best visualizations will reveal what is interesting about the specific data set you’re working with. Different data may require different approaches, encodings, or techniques to reveal its interesting aspects. While default visualization formats are a great place to start, and may come with the correct design choices pre-selected, sometimes the data will yield new knowledge when a different visualization approach or format is used." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"[...] the term infographics is useful for referring to any visual representation of data that is: (•)  manually drawn (and therefore a custom treatment of the information); (•) specific to the data at hand (and therefore nontrivial to recreate with different data); (•) aesthetically rich (strong visual content meant to draw the eye and hold interest); and (•) relatively data-poor (because each piece of information must be manually encoded)." (Noah Iliinsky & Julie Steele, "Designing Data Visualizations", 2011)

"[...] the terms data visualization and information visualization (casually, data viz and info viz) are useful for referring to any visual representation of data that is: (•) algorithmically drawn (may have custom touches but is largely rendered with the help of computerized methods); (•) easy to regenerate with different data (the same form may be repurposed to represent different datasets with similar dimensions or characteristics); (•) often aesthetically barren (data is not decorated); and (•) relatively data-rich (large volumes of data are welcome and viable, in contrast to infographics)." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Ultimately, the key to a successful visualization is making good design choices." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"[...] visual art, primarily serves the relationship between the designer and the data. [...] it often entails unidirectional encoding of information, meaning that the reader may not be able to decode the visual presentation to understand the underlying information. [...] visual art merely translates the data into a visual form. The designer may intend only to condense it, translate it into a new medium, or make it beautiful; she may not intend for the reader to be able to extract anything from it other than enjoyment." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"[...] you should not rely on social or cultural conventions to convey information. However, these conventions can be very powerful, and you should be aware that your reader brings them to the table. Making use of them, when possible, to reinforce your message will help you convey information efficiently. Avoid countering conventions where possible in order to avoid creating cognitive dissonance, a clash of habitual interpretation with the underlying message you are sending." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

✏️Alan Smith - Collected Quotes

"Bar charts are effective at displaying magnitude comparisons because they require readers to make visual interpretations in one dimension only - the length (or height) of its constituent rectangles. This is usually a good thing - it’s simple to interpret and, combined with full-length tick marks, makes comparing values quick and easy. However, condensing all differences between the data being compared into a one-dimensional axis can present chart readers with problems of interpretation when there are very big differences - of many orders of magnitude - in the data being presented." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"Before even thinking about charts, it should be recognised that the table on its own is extremely useful. Its clear structure, with destination regions organised in columns and origins in rows, allows the reader to quickly look up any value - including totals - quickly and precisely. That’s what tables are good for. The deficiency of the table, however, is in identifying patterns within the data. Trying to understand the relationships between the numbers is difficult because, to compare the numbers with each other, the reader needs to store a lot of information in working memory, creating what psychologists refer to as a high 'cognitive load'." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"For a chart to be truly insightful, context is crucial because it provides us with the visual answer to an important question - 'compared with what'? No number on its own is inherently big or small – we need context to make that judgement. Common contextual comparisons in charts are provided by time ('compared with last year...') and place ('compared with the north...'). With ranking, context is provided by relative performance ('compared with our rivals...')." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"Just because an interesting fact is made of numbers, it doesn’t mean we have to show it on a chart. Much time and effort spent worrying about how to dress up a dull chart could be saved by realising that some data comparisons should be explained succinctly using words alone." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"Our visual perception is context-dependent; we are not good at seeing things in isolation." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"[...] there is no such thing as a perfect chart. Every chart is a design compromise, aiming to emphasise the most important relationships in a set of numbers at the expense of the less important."(Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"Scatterplots are valuable because, without having to inspect each individual point, we can see overall aggregate patterns in potentially thousands of data points. But does this density of information come at a price - just how easy are they to read? [...] The truth is such charts can shed light on complex stories in a way words alone - or simpler charts you might be more familiar with - cannot." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"Statistics are not necessarily a good determinant of underlying causes, but they can help you spot patterns - just make sure they’re helpful ones." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"[...] using columns for time series data is a technique to be used sparingly. Data should be relatively sparse (if the above chart showed quarterly rather than annual data over the same period, the columns would simply be too thin) and the fewer data series the better (ideally just one)."

"Whatever approach you take, it’s always a good idea to define a range of reusable colour palettes so you don’t need to face the same colour design problems every time you want to create a chart or map. There will always be exceptions that require a different treatment, but it’s good to have a solid default starting point." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

07 December 2006

✏️Kenneth W Haemer - Collected Quotes

"Admittedly a chart is primarily a picture, and for presentation purposes should be treated as such; but in most charts it is desirable to be able to read the approximate magnitudes by reference to the scales. Such reference is almost out of the question without some rulings to guide the eye. Second, the picture itself may be misleading without enough rulings to keep the eye 'honest'. Although sight is the most reliable of our senses for measuring (and most other) purposes, the unaided eye is easily deceived; and there are numerous optical illusions to prove it. A third reason, not vital, but still of some importance, is that charts without rulings may appear weak and empty and may lack the structural unity desirable in any illustration." (Kenneth W Haemer, "Hold That Line. A Plea for the Preservation of Chart Scale Ruling", The American Statistician Vol. 1 (1) 1947)

"If perspective must be used - and it does have proven attraction value - it should be used with restraint. A slight rather than a sharp convergence provides definite novelty with negligible distortion. Also, perspective should be used consistently: that is, the same perspective for all charts in the presentation. Any resultant overstatement or understatement of the data will thus be uniform throughout. In any event, horizontal scale rulings should be used to enable the reader to check the visual impression, and to evaluate the plottings." (Kenneth W. Haemer, "The Perils of Perspective", The American Statistician Vol. 1 (3) 1947),

"To the question "how many rulings is the 'right' number?" there is unfortunately no easy answer. Charts designed to perform the work of a large amount of tabular data, being primarily tabular in purpose, obviously require closer rulings than charts designed primarily to present a picture. But even within these two groups the decision may be influenced by the precise purpose of the chart, its size and shape, the nature of the data, the degree of reading accuracy needed, and to some extent, by the style of the medium in which the chart appears." (Kenneth W Haemer, "Hold That Line. A Plea for the Preservation of Chart Scale Ruling", The American Statistician Vol. 1 (1) 1947)

"[….] double-scale charts are likely to be misleading unless the two zero values coincide (either on or off the chart). To insure an accurate comparison of growth the scale intervals should be so chosen that both curves meet at some point. This treatment produces the effect of percentage relatives or simple index numbers with the point of juncture serving as the base point. The principal advantage of this form of presentation is that it is a short-cut method of comparing the relative change of two or more series without computation. It is especially useful for bringing together series that either vary widely in magnitude or are measured in different units and hence cannot be compared conveniently on a chart having only one absolute-amount scale. In general, the double scale treatment should not be used for presenting growth comparisons to the general reader." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2 (3) , 1948)

"[…] many readers are confused by the presence of two scales, and either use the wrong one or simply disregard both. Also, the general reader has the disconcerting habit of believing that because one curve is higher than another, it is also larger in magnitude. This leads to all sorts of misconceptions." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2 (3) , 1948)

"First, color has identity value. In other words, it serves to distinguish one thing from another. In many cases it does this much better and much quicker than black and white coding by different types of shading or lines. […] Second, color has suggestion value. […] Red is usually taken to mean a danger signal or an unfavorable condition. But since it is one of the most visible of colors it is excellent for adding emphasis, regardless of connotation. […] Green has no such unfavorable implication, and is usually appropriate for suggesting a "green light" condition. […] Similarly, every color carries its own connotations; and although they seldom make a vital difference one way or the other, it seems logical to try to make them work for you rather than against you." (Kenneth W Haemer, "Color in Chart Presentation", The American Statistician Vol. 4 (2) , 1950)

"Seeing color isn't always as simple as it may seem. Some colors are not easy to see unless the conditions are just right; some are so easy to see that they overpower everything else; some are easy to see but difficult to distinguish. […] Large masses of color become too visible and easily overwhelm the entire chart. The more visible the color the easier it is to use too much of it." (Kenneth W Haemer, "Color in Chart Presentation", The American Statistician Vol. 4 (2) , 1950)

06 December 2006

✏️Jennifer George-Palilonis - Collected Quotes

"[…] a graphic with loose, incomplete information that is too verbose, vague or passive can actually impede your audience’s ability to make sense of the information at hand. If the graphic confuses or frustrates the audience, you’re likely to do more harm than good, leave them with more questions than answers and essentially turn them away from your publication." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Actually composing an information graphic - putting all of the pieces together in a rhythmic, orderly, interesting design - is equal in importance to writing the text and creating the main illustrations. In fact, the design of the graphic can have a direct impact on an audience’s ability to follow the information that is presented in an efficient and logical manner. Design can also affect the level of meaning and understanding an audience will take away from the graphic. Thus, understanding how to compose/design an information graphic is paramount to a graphics reporter’s ability to succeed." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"An infographic’s headline should summarize the main point of the presentation. Any introductory text or 'chatter' should explain the most newsworthy information within the context of the visual story being told; i.e., is the what of the story most important? Is the how of the story most important?, etc." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Believe it or not, it’s easy to make statistics lie. It’s called massaging the facts, and people do it all the time. […] To avoid this, graphics reporters should develop a keen eye for spotting problems with statistics in order to avoid the embarrassment and possible liability of reporting incorrect information." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Graphics should be planned, written and developed to stand alone. Even when a graphic is accompanied by a story, we can’t always count on the reader to get that far. Scanning readers often don’t engage with stories at all. Rather, they browse the page, often reading only display type and visual elements. And, even those who intend to read the story often engage with the graphics first because they tend to be more eye-catching. In both cases, you simply can’t create a graphic that isn’t complete without the story. Readers should finish an information graphic feeling confident that they understand the information it presents. This isn’t to say that you must tell the entire story with the graphic. However, the portions of the story that are represented in the graphic must be complete and clear." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Just as rhythm in music can move you to dance, sway or tap your foot, visual rhythm is the combination and arrangement of elements that moves your eyes through a graphic presentation. Visual rhythm can be achieved by repeating patterns that are similar in size, shape or color, by alternating elements that contrast one another in some way or by placing elements in a manner that creates progression, such as small to large or light to dark." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Look for comparisons, dates or other organizational facts outlined in the story. Who are the key players, and why? What are the key dates? How did we get here? Where do we go from here? What’s at issue, and what does it mean for the reader? These types of questions often lead to discovering graphics potential for a story, and by presenting the answers in a graphic manner, you provide readers with a quickly accessible and easily understood context for the rest of the story." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Make use of a simple data metaphor. Regardless of the concept you are trying to convey with an information graphic, you must make sure that the visual metaphor (i.e., a circle to represent a whole, as with a pie chart) be clear and logical. Don’t get so caught up in being clever that you make illogical comparisons or use unclear metaphors. In other words, don’t make your readers have to think too hard to get the point. They’ll appreciate you for it!" (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Proportion is important to information graphics because it helps create a sense of hierarchy and order among the elements. […] Proportion is also achieved by incorporating elements of varying sizes or shapes in a layout. This practice allows us to compare them to one another and make visual judgments about their relative sizes and shapes or proportion. Adhering to proportional size and shape relationships will result in a more interesting overall visual effect than if all elements are more or less the same size. Proportion is also useful in contributing to a sense of depth." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"[…] rhythm can be achieved in a variety of different ways. Asymmetrical balance is most commonly used in the design of graphics because it is the most effective way to move the eye around a graphic. Repetition in the placement of like elements or even the same element can also establish rhythm in a graphic. The similarity of the elements makes a visual connection for the eye and moves it from one to the next. Chronological, numerical or alphabetic placement of elements is also a simple way to create rhythm. This placement creates an obvious order for the eye to follow. Finally, integrating visual elements that are directional in nature often helps lead the eye in a specific direction. This could be something as simple as the use of an arrow in a design." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Specific numbers, visual descriptions of objects or events and identifiable locations don’t always jump out, and a graphic may not always present itself right away. A good graphics reporter will often discover graphics potential in less obvious ways. Is the explanation in a story getting bogged down and hard to follow? If so, can the information be organized differently? Perhaps in a more graphic manner? Is there information that hat can be conveyed conceptually to put a thought or idea into a more visual perspective? Visual metaphors (or 'data metaphors' in the case of mathematical or quantifiable information) often make it easier for people to digest information." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Text should provide the information and context that visuals cannot. By their nature, visuals can be ambiguous; well-written sentences are not. Infographics - whether statistical, cartographic or diagrammatic - are meant to demonstrate data visually and holistically. So the visuals in an infographic should do as much explanatory 'lifting' as possible, allowing words only to qualify, specify, summarize and organize." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

05 December 2006

✏️Dennis K Lieu - Collected Quotes

"Being a good team member takes work. Most people are used to working on their own - making decisions, prioritizing tasks, and being accountable for their own work. Working with others requires a different approach than working alone. To be a successful part of a team, you need to consider several issues. You should be prepared not to be in charge of everything. For some people, this requires a great deal of effort; for other people, it is less taxing. At times, you will be the supervisor; other times you will be supervised. You need to be flexible and understand that a team consisting only of leaders (or only of followers) is not likely to perform well." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Charts are used to represent quantitative data in a graphic format. A chart visually illustrates relationships between numbers. When creating a chart, keep in mind that the goal is to represent the data in a simplified and appealing way so as not to muddle the message the chart is meant to convey." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Design is a goal-oriented, problem-solving activity that typically takes many iterations - teams rarely come up with the 'optimal' design the first time around. [...] With each model, improvements were made to the original design such that the minivans of today are much improved compared to the initial product. The key activity in the design process is the development and testing of a descriptive model of the finished product before the product is finally manufactured or constructed." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Designers are responsible for the project’s fit and finish, that is, specifying the geometry and sizes of components so they properly mate with each other and are ergonomically and aesthetically acceptable within the operating environment." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Information graphics are an essential component of technical communication. Very few technical documents or presentations can be considered complete without graphical elements to present some essential data. Because engineers are visually oriented, graphic aids allow their thoughts and ideas to be better understood by other engineers. Information graphics are essential in presenting data because they simplify the content, offer a visually pleasing alternative to gray text in a proposal or an article, and thereby invite interest." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Most importantly, prepare to learn how to be a team member. Share your strengths with the team and be willing to contribute. Remember, the combined efforts of all team members should yield a better outcome than the efforts of one individual. Learn new team skills and be adaptable." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Reverse engineering is a systematic methodology for analyzing the design of an existing device or system, either as an approach to study the design or as a prerequisite for redesign. Reverse engineering essentially is a process used to gain information about the functionality and sizes of existing design components. [...] Reverse engineering is a technique within the practice of engineering design that can be useful in several ways. Reverse engineering can save time because there is no need to 'reinvent the wheel' when you can start from existing geometric data. The reverse engineering technique also can help an engineer develop a systematic approach to thinking about and improving the design of devices and systems." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Tables work in a variety of situations because they convey large amounts of data in a condensed fashion. Use tables in the following situations: (1) to structure data so the reader can easily pick out the information desired, (2) to display in a chart when the data contains too many variables or values, and (3) to display exact values that are more important than a visual moment in time." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"The data [in tables] should not be so spaced out that it is difficult to follow or so cramped that it looks trapped. Keep columns close together; do not spread them out more than is necessary. If the columns must be spread out to fit a particular area, such as the width of a page, use a graphic device such as a line or screen to guide the reader’s eye across the row." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"Whereas charts generally focus on a trend or comparison, tables organize data for the reader to scan. Tables present data in an easy-read-format, or matrix. Tables arrange data in columns or rows so readers can make side-by-side comparisons. Tables work for many situations because they convey large amounts of data and have several variables for each item. Tables allow the reader to focus quickly on a specific item by scanning the matrix or to compare multiple items by scanning the rows or columns."  (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

✏️John M Chambers - Collected Quotes

"At the heart of probabilistic statistical analysis is the assumption that a set of data arises as a sample from a distribution in some class of probability distributions. The reasons for making distributional assumptions about data are several. First, if we can describe a set of data as a sample from a certain theoretical distribution, say a normal distribution (also called a Gaussian distribution), then we can achieve a valuable compactness of description for the data. For example, in the normal case, the data can be succinctly described by giving the mean and standard deviation and stating that the empirical (sample) distribution of the data is well approximated by the normal distribution. A second reason for distributional assumptions is that they can lead to useful statistical procedures. For example, the assumption that data are generated by normal probability distributions leads to the analysis of variance and least squares. Similarly, much of the theory and technology of reliability assumes samples from the exponential, Weibull, or gamma distribution. A third reason is that the assumptions allow us to characterize the sampling distribution of statistics computed during the analysis and thereby make inferences and probabilistic statements about unknown aspects of the underlying distribution. For example, assuming the data are a sample from a normal distribution allows us to use the t-distribution to form confidence intervals for the mean of the theoretical distribution. A fourth reason for distributional assumptions is that understanding the distribution of a set of data can sometimes shed light on the physical mechanisms involved in generating the data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Equal variability is not always achieved in plots. For instance, if the theoretical distribution for a probability plot has a density that drops off gradually to zero in the tails (as the normal density does), then the variability of the data in the tails of the probability plot is greater than in the center. Another example is provided by the histogram. Since the height of any one bar has a binomial distribution, the standard deviation of the height is approximately proportional to the square root of the expected height; hence, the variability of the longer bars is greater." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Frequently we can increase the informativeness of a graph by removing structure from the data once we have identified it, so that subsequent plots are free of its dominating influence and can help us see finer structure or subtler effects. This usually means (l) partitioning the data, or (2) plotting differences or ratios, or (3) fitting a model and taking the residuals as a new set of data for further study." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Generally speaking, a good display is one in which the visual impact of its components is matched to their importance in the context of the analysis. Consider the issue of overplotting." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Graphical methodology provides powerful diagnostic tools for conveying properties of the fitted regression, for assessing the adequacy of the fit, and for suggesting improvements. There is seldom any prior guarantee that a hypothesized regression model will provide a good description of the mechanism that generated the data. Standard regression models carry with them many specific assumptions about the relationship between the response and explanatory variables and about the variation in the response that is not accounted for by the explanatory variables. In many applications of regression there is a substantial amount of prior knowledge that makes the assumptions plausible; in many other applications the assumptions are made as a starting point simply to get the analysis off the ground. But whatever the amount of prior knowledge, fitting regression equations is not complete until the assumptions have been examined." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Missing data values pose a particularly sticky problem for symbols. For instance, if the ray corresponding to a missing value is simply left off of a star symbol, the result will be almost indistinguishable from a minimum (i.e., an extreme) value. It may be better either (i) to impute a value, perhaps a median for that variable, or a fitted value from some regression on other variables, (ii) to indicate that the value is missing, possibly with a dashed line, or (iii) not to draw the symbol for a particular observation if any value is missing." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Part of the strategy of regression modelling is to improve the model until the residuals look 'structureless', or like a simple random sample. They should only contain structure that is already taken into account (such as nonconstant variance) or imposed by the fitting process itself. By plotting them against a variety of original and derived variables, we can look for systematic patterns that relate to the model's adequacy. Although we talk about graphics for use after the model is fit, if problems with the fit are discovered at this stage of the analysis, We should take corrective action and refit the equation or a modified form of it." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Plotting on power-transformed scales (either cube roots or logs) is recommended only in those cases where the distribution is very asymmetric and the reference configuration for the untransformed plot would be a straight line through the origin." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Symmetry is also important because it can simplify our thinking about the distribution of a set of data. If we can establish that the data are (approximately) symmetric, then we no longer need to describe the  shapes of both the right and left halves. (We might even combine the information from the two sides and have effectively twice as much data for viewing the distributional shape.) Finally, symmetry is important because many statistical procedures are designed for, and work best on, symmetric data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The information on a plot should be relevant to the goals of the analysis. This means that in choosing graphical methods we should match the capabilities of the methods to our needs in the context of each application. [...] Scatter plots, with the views carefully selected as in draftsman's displays, casement displays, and multiwindow plots, are likely to be more informative. We must be careful, however, not to confuse what is relevant with what we expect or want to find. Often wholly unexpected phenomena constitute our most important findings." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The most important reason for portraying standard deviations is that they give us a sense of the relative variability of the points in different regions of the plot." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The quantile plot is a good general display since it is fairly easy to construct and does a good job of portraying many aspects of a distribution. Three convenient features of the plot are the following: First, in constructing it, we do not make any arbitrary choices of parameter values or cell boundaries [...] and no models for the data are fitted or assumed. Second, like a table, it is not a summary but a display of all the data. Third, on the quantile plot every point is plotted at a distinct location, even if there are duplicates in the data. The number of points that can be portrayed without overlap is limited only by the resolution of the plotting device. For a high resolution device several hundred points distinguished." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The truth is that one display is better than another if it leads to more understanding. Often a simpler display, one that tries to accomplish less at one time, succeeds in conveying more insight. In order to understand complicated or subtle structure in the data we should be prepared to look at complicated displays when necessary, but to see any particular type of structure we should use the simplest display that shows it."(John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"There are several reasons why symmetry is an important concept in data analysis. First, the most important single summary of a set of data is the location of the center, and when data meaning of 'center' is unambiguous. We can take center to mean any of the following things, since they all coincide exactly for symmetric data, and they are together for nearly symmetric data: (l) the Center Of symmetry. (2) the arithmetic average or center Of gravity, (3) the median or 50%. Furthermore, if data a single point of highest concentration instead of several (that is, they are unimodal), then we can add to the list (4) point of highest concentration. When data are far from symmetric, we may have trouble even agreeing on what we mean by center; in fact, the center may become an inappropriate summary for the data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"We can gain further insight into what makes good p!ots by thinking about the process of visual perception. The eye can assimilate large amounts of visual information, perceive unanticipated structure, and recognize complex patterns; however, certain kinds of patterns are more readily perceived than others. If we thoroughly understood the interaction between the brain, eye, and picture, we could organize displays to take advantage of the things that the eye and brain do best, so that the potentially most important patterns are associated with the most easily perceived visual aspects in the display." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"When some interesting structure is seen in a plot, it is an advantage to be able to relate that structure back to the original data in a clear, direct, and meaningful way. Although this seems obvious, interpretability is at once one of the most important, difficult, and controversial issues." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

04 December 2006

✏️Lawrence C Hamilton - Collected Quotes

"Boxplots provide information at a glance about center (median), spread (interquartile range), symmetry, and outliers. With practice they are easy to read and are especially useful for quick comparisons of two or more distributions. Sometimes unexpected features such as outliers, skew, or differences in spread are made obvious by boxplots but might otherwise go unnoticed." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Comparing normal distributions reduces to comparing only means and standard deviations. If standard deviations are the same, the task even simpler: just compare means. On the other hand, means and standard deviations may be incomplete or misleading as summaries for nonnormal distributions." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Correlation and covariance are linear regression statistics. Nonlinearity and influential cases cause the same problems for correlations, and hence for principal components/factor analysis, as they do for regression. Scatterplots should be examined routinely to check for nonlinearity and outliers. Diagnostic checks become even more important with maximum-likelihood factor analysis, which makes stronger assumptions and may be less robust than principal components or principal factors." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Data analysis is rarely as simple in practice as it appears in books. Like other statistical techniques, regression rests on certain assumptions and may produce unrealistic results if those assumptions are false. Furthermore it is not always obvious how to translate a research question into a regression model." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Data analysis typically begins with straight-line models because they are simplest, not because we believe reality is inherently linear. Theory or data may suggest otherwise [...]" (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Exploratory regression methods attempt to reveal unexpected patterns, so they are ideal for a first look at the data. Unlike other regression techniques, they do not require that we specify a particular model beforehand. Thus exploratory techniques warn against mistakenly fitting a linear model when the relation is curved, a waxing curve when the relation is S-shaped, and so forth." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"If a distribution were perfectly symmetrical, all symmetry-plot points would be on the diagonal line. Off-line points indicate asymmetry. Points fall above the line when distance above the median is greater than corresponding distance below the median. A consistent run of above-the-line points indicates positive skew; a run of below-the-line points indicates negative skew." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Principal components and factor analysis are methods for data reduction. They seek a few underlying dimensions that account for patterns of variation among the observed variables underlying dimensions imply ways to combine variables, simplifying subsequent analysis. For example, a few combined variables could replace many original variables in a regression. Advantages of this approach include more parsimonious models, improved measurement of indirectly observed concepts, new graphical displays, and the avoidance of multicollinearity." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Principal components and principal factor analysis lack a well-developed theoretical framework like that of least squares regression. They consequently provide no systematic way to test hypotheses about the number of factors to retain, the size of factor loadings, or the correlations between factors, for example. Such tests are possible using a different approach, based on maximum-likelihood estimation." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Remember that normality and symmetry are not the same thing. All normal distributions are symmetrical, but not all symmetrical distributions are normal. With water use we were able to transform the distribution to be approximately symmetrical and normal, but often symmetry is the most we can hope for. For practical purposes, symmetry (with no severe outliers) may be sufficient. Transformations are not a magic wand, however. Many distributions cannot even be made symmetrical." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Visually, skewed sample distributions have one 'longer' and one 'shorter' tail. More general terms are 'heavier' and 'lighter' tails. Tail weight reflects not only distance from the center (tail length) but also the frequency of cases at that distance (tail depth, in a histogram). Tail weight corresponds to actual weight if the sample histogram were cut out of wood and balanced like a seesaw on its median (see next section). A positively skewed distribution is heavier to the right of the median; negative skew implies the opposite." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"A well-constructed graph can show several features of the data at once. Some graphs contain as much information as the original data, and so (unlike numerical summaries) do not actually simplify the data; rather, they express it in visual form. Unexpected or unusual features, which are not obvious within numerical tables, often jump to our attention once we draw a graph. Because the strengths and weaknesses of graphical methods are opposite those of numerical summary methods, the two work best in combination." (Lawrence C Hamilton, "Data Analysis for Social Scientists: A first course in applied statistics", 1995)

"Data analysis [...] begins with a dataset in hand. Our purpose in data analysis is to learn what we can from those data, to help us draw conclusions about our broader research questions. Our research questions determine what sort of data we need in the first place, and how we ought to go about collecting them. Unless data collection has been done carefully, even a brilliant analyst may be unable to reach valid conclusions regarding the original research questions." (Lawrence C Hamilton, "Data Analysis for Social Scientists: A first course in applied statistics", 1995)

"Variance and its square root, the standard deviation, summarize the amount of spread around the mean, or how much a variable varies. Outliers influence these statistics too, even more than they influence the mean. On the other hand. the variance and standard deviation have important mathematical advantages that make them (together with the mean) the foundation of classical statistics. If a distribution appears reasonably symmetrical, with no extreme outliers, then the mean and standard deviation or variance are the summaries most analysts would use." (Lawrence C Hamilton, "Data Analysis for Social Scientists: A first course in applied statistics", 1995)

✏️William S Cleveland - Collected Quotes

"A graphical form that involves elementary perceptual tasks that lead to more accurate judgments than another graphical form (with the same quantitative in formation) will result in better organization and increase the chances of a correct perception of patterns and behavior." (William S Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods", Journal of the American Statistical Association Vol. 79(387), 1984)

"Dot charts are suggested as replacements for bar charts. The replacements allow more effective visual decoding of the quantitative information and can be used for a wider variety of data sets." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"[...] error bars are more effectively portrayed on dot charts than on bar charts. […] On the bar chart the upper values of the intervals stand out well, but the lower values are visually deemphasized and are not as well perceived as a result of being embedded in the bars. This deemphasis does not occur on the dot chart." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"Experimentation with graphical methods for data presentation is important for improving graphical communication in science." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"For certain types of data structures, one cannot always use the most accurate elementary task, judging position along a common scale. But this is not true of the data represented in divided bar charts and pie charts; one can always represent such data along a common scale. A pie chart can always be replaced by a bar chart, thus replacing angle judgments by position judgments. […] A divided bar chart can always be replaced by a grouped bar chart; […]." (William S Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods", Journal of the American Statistical Association Vol. 79(387), 1984)

"Of course increased bias does not necessarily imply less overall accuracy. The reasoning, however, is that the mechanism leading to bias might well lead to other types of inaccuracy as well." (William S Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods", Journal of the American Statistical Association Vol. 79(387), 1984)

"One must be careful not to fall into a conceptual trap by adopting accuracy as a criterion. We are not saying that the primary purpose of a graph is to convey numbers with as many decimal places as possible. […] The power of a graph is its ability to enable one to take in the quantitative information, organize it, and see patterns and structure not readily revealed by other means of studying the data." (William S Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods", Journal of the American Statistical Association Vol. 79(387), 1984)

"The bar of a bar chart has two aspects that can be used to visually decode quantitative information-size (length and area) and the relative position of the end of the bar along the common scale. The changing sizes of the bars is an important and imposing visual factor; thus it is important that size encode something meaningful. The sizes of bars encode the magnitudes of deviations from the baseline. If the deviations have no important interpretation, the changing sizes are wasted energy and even have the potential to mislead." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984) 

"The full break results in a graph with two juxtaposed panels. This use of juxtaposition to provide a full scale break, with each panel having a fill frame and its own scales, shows the scale break about as forcefully as possible and discourages mental visual connections by viewers and actual connections by authors." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984) 

"The logarithm is an extremely powerful and useful tool for graphical data presentation. One reason is that logarithms turn ratios into differences, and for many sets of data, it is natural to think in terms of ratios. […] Another reason for the power of logarithms is resolution. Data that are amounts or counts are often very skewed to the right; on graphs of such data, there are a few large values that take up most of the scale and the majority of the points are squashed into a small region of the scale with no resolution." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"[…] the partial scale break is a weak indicator that the reader can fail to appreciate fully; visually the graph is still a single panel that invites the viewer to see, inappropriately, patterns between the two scales. […] The partial scale break also invites authors to connect points across the break, a poor practice indeed; […]" (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984) 

"A connected graph is appropriate when the time series is smooth, so that perceiving individual values is not important. A vertical line graph is appropriate when it is important to see individual values, when we need to see short-term fluctuations, and when the time series has a large number of values; the use of vertical lines allows us to pack the series tightly along the horizontal axis. The vertical line graph, however, usually works best when the vertical lines emanate from a horizontal line through the center of the data and when there are no long-term trends in the data." (William S Cleveland, "The Elements of Graphing Data", 1985)

"A time series is a special case of the broader dependent-independent variable category. Time is the independent variable. One important property of most time series is that for each time point of the data there is only a single value of the dependent variable; there are no repeat measurements. Furthermore, most time series are measured at equally-spaced or nearly equally-spaced points in time." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Another way to obscure data is to graph too much. It is always tempting to show everything that comes to mind on a single graph, but graphing too much can result in less being seen and understood." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Do not allow data labels in the data region to interfere with the quantitative data or to clutter the graph. […] Avoid putting notes, keys, and markers in the data region. Put keys and markers just outside the data region and put notes in the legend or in the text." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Clear vision is a vital aspect of graphs. The viewer must be able to visually disentangle the many different items that appear on a graph." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Graphs that communicate data to others often must undergo reduction and reproduction; these processes, if not done with care, can interfere with visual clarity." (William S Cleveland, "The Elements of Graphing Data", 1985)

"In part, graphing data needs to be iterative because we often do not know what to expect of the data; a graph can help discover unknown aspects of the data, and once the unknown is known, we frequently find ourselves formulating a new question about the data. Even when we understand the data and are graphing them for presentation, a graph will look different from what we had expected; our mind's eye frequently does not do a good job of predicting what our actual eyes will see." (William S Cleveland, "The Elements of Graphing Data", 1985)

"It is common for positive data to be skewed to the right: some values bunch together at the low end of the scale and others trail off to the high end with increasing gaps between the values as they get higher. Such data can cause severe resolution problems on graphs, and the common remedy is to take logarithms. Indeed, it is the frequent success of this remedy that partly accounts for the large use of logarithms in graphical data display." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Iteration and experimentation are important for all of data analysis, including graphical data display. In many cases when we make a graph it is immediately clear that some aspect is inadequate and we regraph the data. In many other cases we make a graph, and all is well, but we get an idea for studying the data in a different way with a different graph; one successful graph often suggests another." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Make the data stand out and avoid superfluity are two broad strategies that serve as an overall guide to the specific principles […] The data - the quantitative and qualitative information in the data region - are the reason for the existence of the graph. The data should stand out. […] We should eliminate superfluity in graphs. Unnecessary parts of a graph add to the clutter and increase the difficulty of making the necessary elements - the data - stand out." (William S Cleveland, "The Elements of Graphing Data", 1985)

"No matter how clever the choice of the information, and no matter how technologically impressive the encoding, a visualization fails if the decoding fails. Some display methods lead to efficient, accurate decoding, and others lead to inefficient, inaccurate decoding. It is only through scientific study of visual perception that informed judgments can be made about display methods." (William S Cleveland, "The Elements of Graphing Data", 1985)

"There are some who argue that a graph is a success only if the important information in the data can be seen within a few seconds. While there is a place for rapidly-understood graphs, it is too limiting to make speed a requirement in science and technology, where the use of graphs ranges from, detailed, in-depth data analysis to quick presentation." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Use a reference line when there is an important value that must be seen across the entire graph, but do not let the line interfere with the data." (William S Cleveland, "The Elements of Graphing Data", 1985)

"When a graph is constructed, quantitative and categorical information is encoded, chiefly through position, size, symbols, and color. When a person looks at a graph, the information is visually decoded by the person's visual system. A graphical method is successful only if the decoding process is effective. No matter how clever and how technologically impressive the encoding, it is a failure if the decoding process is a failure. Informed decisions about how to encode data can be achieved only through an understanding of the visual decoding process, which is called graphical perception." (William S Cleveland, "The Elements of Graphing Data", 1985)

"When magnitudes are graphed on a logarithmic scale, percents and factors are easier to judge since equal multiplicative factors and percents result in equal distances throughout the entire scale." (William S Cleveland, "The Elements of Graphing Data", 1985)

"When the data are magnitudes, it is helpful to have zero included in the scale so we can see its value relative to the value of the data. But the need for zero is not so compelling that we should allow its inclusion to ruin the resolution of the data on the graph." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Data that are skewed toward large values occur commonly. Any set of positive measurements is a candidate. Nature just works like that. In fact, if data consisting of positive numbers range over several powers of ten, it is almost a guarantee that they will be skewed. Skewness creates many problems. There are visualization problems. A large fraction of the data are squashed into small regions of graphs, and visual assessment of the data degrades. There are characterization problems. Skewed distributions tend to be more complicated than symmetric ones; for example, there is no unique notion of location and the median and mean measure different aspects of the distribution. There are problems in carrying out probabilistic methods. The distribution of skewed data is not well approximated by the normal, so the many probabilistic methods based on an assumption of a normal distribution cannot be applied." (William S Cleveland, "Visualizing Data", 1993)

"Fitting data means finding mathematical descriptions of structure in the data. An additive shift is a structural property of univariate data in which distributions differ only in location and not in spread or shape. […] The process of identifying a structure in data and then fitting the structure to produce residuals that have the same distribution lies at the heart of statistical analysis. Such homogeneous residuals can be pooled, which increases the power of the description of the variation in the data." (William S Cleveland, "Visualizing Data", 1993)

"Fitting is essential to visualizing hypervariate data. The structure of data in many dimensions can be exceedingly complex. The visualization of a fit to hypervariate data, by reducing the amount of noise, can often lead to more insight. The fit is a hypervariate surface, a function of three or more variables. As with bivariate and trivariate data, our fitting tools are loess and parametric fitting by least-squares. And each tool can employ bisquare iterations to produce robust estimates when outliers or other forms of leptokurtosis are present." (William S Cleveland, "Visualizing Data", 1993)

"If the underlying pattern of the data has gentle curvature with no local maxima and minima, then locally linear fitting is usually sufficient. But if there are local maxima or minima, then locally quadratic fitting typically does a better job of following the pattern of the data and maintaining local smoothness." (William S Cleveland, "Visualizing Data", 1993)

"Many good things happen when data distributions are well approximated by the normal. First, the question of whether the shifts among the distributions are additive becomes the question of whether the distributions have the same standard deviation; if so, the shifts are additive. […] A second good happening is that methods of fitting and methods of probabilistic inference, to be taken up shortly, are typically simple and on well understood ground. […] A third good thing is that the description of the data distribution is more parsimonious." (William S Cleveland, "Visualizing Data", 1993)

"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)

"One important aspect of reality is improvisation; as a result of special structure in a set of data, or the finding of a visualization method, we stray from the standard methods for the data type to exploit the structure or the finding." (William S Cleveland, "Visualizing Data", 1993)

"Probabilistic inference is the classical paradigm for data analysis in science and technology. It rests on a foundation of randomness; variation in data is ascribed to a random process in which nature generates data according to a probability distribution. This leads to a codification of uncertainly by confidence intervals and hypothesis tests." (William S Cleveland, "Visualizing Data", 1993)

"Sometimes, when visualization thoroughly reveals the structure of a set of data, there is a tendency to underrate the power of the method for the application. Little effort is expended in seeing the structure once the right visualization method is used, so we are mislead into thinking nothing exciting has occurred." (William S Cleveland, "Visualizing Data", 1993)

"The logarithm is one of many transformations that we can apply to univariate measurements. The square root is another. Transformation is a critical tool for visualization or for any other mode of data analysis because it can substantially simplify the structure of a set of data. For example, transformation can remove skewness toward large values, and it can remove monotone increasing spread. And often, it is the logarithm that achieves this removal." (William S Cleveland, "Visualizing Data", 1993)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"There are two components to visualizing the structure of statistical data - graphing and fitting. Graphs are needed, of course, because visualization implies a process in which information is encoded on visual displays. Fitting mathematical functions to data is needed too. Just graphing raw data, without fitting them and without graphing the fits and residuals, often leaves important aspects of data undiscovered." (William S Cleveland, "Visualizing Data", 1993)

"Using area to encode quantitative information is a poor graphical method. Effects that can be readily perceived in other visualizations are often lost in an encoding by area." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an approach to data analysis that stresses a penetrating look at the structure of data. No other approach conveys as much information. […] Conclusions spring from data when this information is combined with the prior knowledge of the subject under investigation." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an effective framework for drawing inferences from data because its revelation of the structure of data can be readily combined with prior knowledge to draw conclusions. By contrast, because of the formalism of probabilistic methods, it is typically impossible to incorporate into them the full body of prior information." (William S Cleveland, "Visualizing Data", 1993)

"When distributions are compared, the goal is to understand how the distributions shift in going from one data set to the next. […] The most effective way to investigate the shifts of distributions is to compare corresponding quantiles." (William S Cleveland, "Visualizing Data", 1993)

"When the distributions of two or more groups of univariate data are skewed, it is common to have the spread increase monotonically with location. This behavior is monotone spread. Strictly speaking, monotone spread includes the case where the spread decreases monotonically with location, but such a decrease is much less common for raw data. Monotone spread, as with skewness, adds to the difficulty of data analysis. For example, it means that we cannot fit just location estimates to produce homogeneous residuals; we must fit spread estimates as well. Furthermore, the distributions cannot be compared by a number of standard methods of probabilistic inference that are based on an assumption of equal spreads; the standard t-test is one example. Fortunately, remedies for skewness can cure monotone spread as well." (William S Cleveland, "Visualizing Data", 1993)

"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data, and perceiving the information is not so important, then a pie chart is fine." (Richard Becker & William S Cleveland," S-Plus Trellis Graphics User's Manual", 1996)

✏️Scott Berinato - Collected Quotes

"A chart that knows its context well will naturally end up looking better because it’s showing what it needs to show and nothing else. Good context begets good design. Good charts are only the means to a more profound end: presenting your ideas effectively. Good charts are not the product you’re after. They’re the way to deliver your product - insight." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"[…] although the relationship between perception and correlation is linear for all types of charts, the linear rate varies between chart types." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Bad complexity neither elucidates important salient points nor shows coherent broader trends. It will obfuscate, frustrate, tax the mind, and ultimately convey trendlessness and confusion to the viewer. Good complexity, in contrast, emerges from visualizations that use more data than humans can reasonably process to form a few salient points." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"But rules are open to interpretation and sometimes arbitrary or even counterproductive when it comes to producing good visualizations. They’re for responding to context, not setting it. Instead of worrying about whether a chart is "right" or "wrong", focus on whether it’s good." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Charts used to confirm are less formal, and designed well enough to be interpreted, but they don’t always have to be presentation worthy. […] Or maybe you don’t know what you’re looking for […] This is exploratory work - rougher still in design, usually iterative, sometimes interactive. Most of us don’t do as much exploratory work as we do declarative and confirmatory; we should do more. It’s a kind of data brainstorming." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Confirmation is a kind of focused exploration, whereas true exploration is more open-ended. The bigger and more complex the data, and the less you know going in, the more exploratory the work. If confirmation is hiking a new trail, exploration is blazing one." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Dataviz has become a competitive imperative for companies. Those that don’t have a critical mass of managers capable of thinking visually will lag behind the ones that do." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design serves a more important function than simply pleasing you: It helps you access ideas. It improves your comprehension and makes the ideas more persuasive. Good design makes lesser charts good and good charts transcendent." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"In general, charts that contain enough data to take minutes, not seconds, to digest will work better on paper or a personal screen, for an individual who’s not being asked to listen to a presentation while trying to take in so much information." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Keep in mind that bars, lines, and scatter plots are your workhorses. Those three forms alone will help you arrive at many good charts in most situations. While you shouldn’t shun other forms, you also don’t need to choose dif­ferent ones just to be dif­ferent." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"People feel data. They don’t just process statistics and come to rational conclusions. They form emotions about the data visualization. We are not informed by charts; we’re affected by them." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Sketching bridges idea and visualization. Good sketches are quick, simple, and messy. Don’t think too much about real values or scales or any refining details. In fact, don’t think too much. Just keep in mind those keywords, the possible forms they suggest, and that overarching idea you keep coming back to, the one you wrote down in answer to What am I trying to say (or learn)? And draw. Create shapes, develop a sense of what you want your audience to see. Try anything." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"To build fluency in this new language, to tap into this vehicle for professional growth, and to give your organization a competitive edge, you first need to recognize a good chart when you see one." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Unlike text, visual communication is governed less by an agreed-upon convention between 'writer' and 'reader' than by how our visual systems react to stimuli, often before we’re aware of it. And just as composers use music theory to create music that produces certain predictable effects on an audience, chart makers can use visual perception theory to make more-effective visualizations with similarly predictable effects." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Ultimately, when you create a visualization, that’s what you need to know. Is it good? Is it effective? Are you helping people see an idea and learn from it? Are you making your case?" (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Visualization is an abstraction, a way to reduce complexity […] complexity and color catch the eye; they’re captivating. They can also make it harder to extract meaning from a chart." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"We see first what stands out. Our eyes go right to change and difference - peaks, valleys, intersections, dominant colors, outliers. Many successful charts - often the ones that please us the most and are shared and talked about - exploit this inclination by showing a single salient point so clearly that we feel we understand the chart’s meaning without even trying." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"When deeply complex charts work, we find them effective and beautiful, just as we find a symphony beautiful, which is another marvelously complex arrangement of millions of data points that we experience as a coherent whole." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Without context, no one […] can say whether that chart is good. In the absence of context, a chart is neither good nor bad. It’s only well built or poorly built. To judge a chart’s value, you need to know more - much more - than whether you used the right chart type, picked good colors, or labeled axes correctly. Those things can help make charts good, but in the absence of context they’re academic considerations. It’s far more important to know Who will see this? What do they want? What do they need? What idea do I want to convey? What could I show? What should I show? Then, after all that, How will I show it?" (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Your eyes and your brain always notice more dynamic visual information first and fastest. The implicit lesson is to make the idea you want people to see stand out. Conversely, make sure you’re not helping people see something that either doesn’t help convey your idea or actively fights against it." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

✏️Naomi B Robbins - Collected Quotes

"Choose an aspect ratio that shows variation in the data." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"Choose scales wisely, as they have a profound influence on the interpretation of graphs. Not all scales require that zero be included, but bar graphs and other graphs where area is judged do require it." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"Creating a more effective graph involves choosing a graphical construction in which the visual decoding uses tasks as high as possible on the ordered list of elementary graphical tasks while balancing this ordering with consideration of distance and detection." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"Distance and detection also play a role in our ability to decode information from graphs. The closer together objects are, the easier it is to judge attributes that compare them. As distance between objects increases, accuracy of judgment decreases. It is certainly easier to judge the difference in lengths of two bars if they are next to one another than if they are pages apart." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"Graphs are for the forest and tables are for the trees. Graphs give you the big picture and show you the trends; tables give you the details." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"Graphs are pictorial representations of numerical quantities. It therefore seems reasonable to expect that the visual impression we get when looking at a graph is proportional to the numbers that the graph represents. Unfortunately, this is not always the case." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"One graph is more effective than another if its quantitative information can be decoded more quickly or more easily by most observers. […] This definition of effectiveness assumes that the reason we draw graphs is to communicate information - but there are actually many other reasons to draw graphs." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"The principles of drawing effective graphs are the same no matter what the medium: strive for clarity and conciseness. However, since a reader may spend more time studying a written report than is possible during a presentation, more detail can be included." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"Use a logarithmic scale when it is important to understand percent change or multiplicative factors. […] Showing data on a logarithmic scale can cure skewness toward large values." (Naomi B Robbins, "Creating More effective Graphs", 2005) 

"Use a scale break only when necessary. If a break cannot be avoided, use a full scale break. Taking logs can cure the need for a break." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"We make angle judgments when we read a pie chart, but we don't judge angles very well. These judgments are biased; we underestimate acute angles (angles less than 90°) and overestimate obtuse angles (angles greater than 90°). Also, angles with horizontal bisectors (when the line dividing the angle in two is horizontal) appear larger than angles with vertical bisectors." (Naomi B Robbins, "Creating More effective Graphs", 2005)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.