13 October 2018

🔭Data Science: Groups (Just the Quotes)

"The object of statistical science is to discover methods of condensing information concerning large groups of allied facts into brief and compendious expressions suitable for discussion. The possibility of doing this is based on the constancy and continuity with which objects of the same species are found to vary." (Sir Francis Galton, "Inquiries into Human Faculty and Its Development, Statistical Methods", 1883)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics may be defined as numerical statements of facts by means of which large aggregates are analyzed, the relations of individual units to their groups are ascertained, comparisons are made between groups, and continuous records are maintained for comparative purposes." (Melvin T Copeland. "Statistical Methods" [in: Harvard Business Studies, Vol. III, Ed. by Melvin T Copeland, 1917])

"'Correlation' is a term used to express the relation which exists between two series or groups of data where there is a causal connection. In order to have correlation it is not enough that the two sets of data should both increase or decrease simultaneously. For correlation it is necessary that one set of facts should have some definite causal dependence upon the other set [...]" (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"The conception of statistics as the study of variation is the natural outcome of viewing the subject as the study of populations; for a population of individuals in all respects identical is completely described by a description of anyone individual, together with the number in the group. The populations which are the object of statistical study always display variations in one or more respects. To speak of statistics as the study of variation also serves to emphasise the contrast between the aims of modern statisticians and those of their predecessors." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"An average is a single value which is taken to represent a group of values. Such a representative value may be obtained in several ways, for there are several types of averages. […] Probably the most commonly used average is the arithmetic average, or arithmetic mean." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"The fact that index numbers attempt to measure changes of items gives rise to some knotty problems. The dispersion of a group of products increases with the passage of time, principally because some items have a long-run tendency to fall while others tend to rise. Basic changes in the demand is fundamentally responsible. The averages become less and less representative as the distance from the period increases." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (William E Deming, "On Probability as Basis for Action" American Statistician Vol. 29 (4), 1975)

"When the distributions of two or more groups of univariate data are skewed, it is common to have the spread increase monotonically with location. This behavior is monotone spread. Strictly speaking, monotone spread includes the case where the spread decreases monotonically with location, but such a decrease is much less common for raw data. Monotone spread, as with skewness, adds to the difficulty of data analysis. For example, it means that we cannot fit just location estimates to produce homogeneous residuals; we must fit spread estimates as well. Furthermore, the distributions cannot be compared by a number of standard methods of probabilistic inference that are based on an assumption of equal spreads; the standard t-test is one example. Fortunately, remedies for skewness can cure monotone spread as well." (William S Cleveland, "Visualizing Data", 1993)

"The central limit theorem […] states that regardless of the shape of the curve of the original population, if you repeatedly randomly sample a large segment of your group of interest and take the average result, the set of averages will follow a normal curve." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"Random events often come like the raisins in a box of cereal - in groups, streaks, and clusters. And although Fortune is fair in potentialities, she is not fair in outcomes." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"[...] statisticians are constantly looking out for missed nuances: a statistical average for all groups may well hide vital differences that exist between these groups. Ignoring group differences when they are present frequently portends inequitable treatment." (Kaiser Fung, "Numbers Rule the World", 2010)

"The issue of group differences is fundamental to statistical thinking. The heart of this matter concerns which groups should be aggregated and which shouldn’t." (Kaiser Fung, "Numbers Rule the World", 2010)

"Be careful not to confuse clustering and stratification. Even though both of these sampling strategies involve dividing the population into subgroups, both the way in which the subgroups are sampled and the optimal strategy for creating the subgroups are different. In stratified sampling, we sample from every stratum, whereas in cluster sampling, we include only selected whole clusters in the sample. Because of this difference, to increase the chance of obtaining a sample that is representative of the population, we want to create homogeneous groups for strata and heterogeneous (reflecting the variability in the population) groups for clusters." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"If the group is large enough, even very small differences can become statistically significant." (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)

"Self-selection bias occurs when people choose to be in the data - for example, when people choose to go to college, marry, or have children. […] Self-selection bias is pervasive in 'observational data', where we collect data by observing what people do. Because these people chose to do what they are doing, their choices may reflect who they are. This self-selection bias could be avoided with a controlled experiment in which people are randomly assigned to groups and told what to do." (Gary Smith, "Standard Deviations", 2014)

"Often when people relate essentially the same variable in two different groups, or at two different times, they see this same phenomenon - the tendency of the response variable to be closer to the mean than the predicted value. Unfortunately, people try to interpret this by thinking that the performance of those far from the mean is deteriorating, but it’s just a mathematical fact about the correlation. So, today we try to be less judgmental about this phenomenon and we call it regression to the mean. We managed to get rid of the term 'mediocrity', but the name regression stuck as a name for the whole least squares fitting procedure - and that’s where we get the term regression line." (Richard D De Veaux et al, "Stats: Data and Models", 2016)

"Bias is error from incorrect assumptions built into the model, such as restricting an interpolating function to be linear instead of a higher-order curve. [...] Errors of bias produce underfit models. They do not fit the training data as tightly as possible, were they allowed the freedom to do so. In popular discourse, I associate the word 'bias' with prejudice, and the correspondence is fairly apt: an apriori assumption that one group is inferior to another will result in less accurate predictions than an unbiased one. Models that perform lousy on both training and testing data are underfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"To be any good, a sample has to be representative. A sample is representative if every person or thing in the group you’re studying has an equally likely chance of being chosen. If not, your sample is biased. […] The job of the statistician is to formulate an inventory of all those things that matter in order to obtain a representative sample. Researchers have to avoid the tendency to capture variables that are easy to identify or collect data on - sometimes the things that matter are not obvious or are difficult to measure." (Daniel J Levitin, "Weaponized Lies", 2017)

"If you study one group and assume that your results apply to other groups, this is extrapolation. If you think you are studying one group, but do not manage to obtain a representative sample of that group, this is a different problem. It is a problem so important in statistics that it has a special name: selection bias. Selection bias arises when the individuals that you sample for your study differ systematically from the population of individuals eligible for your study." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.