16 December 2006

✏️Willard C Brinton - Collected Quotes

"A warning seems justifiable that the background of a chart should not be made any more prominent than actually necessary. Many charts have such heavy coordinate ruling and such relatively narrow lines for curves or other data that the real facts the chart is intended to portray do not stand out clearly from the background. No more coordinate lines should be used than are absolutely necessary to guide the eye of the reader and to permit an easy reading of the curves." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"After a person has collected data and studied a proposition with great care so that his own mind is made up as to the best solution for the problem, he is apt to feel that his work is about completed. Usually, however, when his own mind is made up, his task is only half done. The larger and more difficult part of the work is to convince the minds of others that the proposed solution is the best one - that all the recommendations are really necessary. Time after time it happens that some ignorant or presumptuous member of a committee or a board of directors will upset the carefully-thought-out plan of a man who knows the facts, simply because the man with the facts cannot present his facts readily enough to overcome the opposition. It is often with impotent exasperation that a person having the knowledge sees some fallacious conclusion accepted, or some wrong policy adopted, just because known facts cannot be marshalled and presented in such manner as to be effective." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"As a general rule dates should always be arranged to read from left to right, and columns of figures should be arranged with the column for the earlier date at the left. A common exception is made, however, in the case of financial reports when it is desired to show the most recent year next to the various type-headings relating to earnings, expenses, etc." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"Comparison between circles of different size should be absolutely avoided. It is inexcusable when we have available simple methods of charting so good and so convenient from every point of view as the horizontal bar." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Co-ordinate ruling does not appear prominently on most original charts because •the ruling is usually printed in some color of ink distinct from the curve itself. When, however, a chart is reproduced in a line engraving the co-ordinate lines come out the same color as the curve or other important data, and there may be too little contrast to assist the reader." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"'Correlation' is a term used to express the relation which exists between two series or groups of data where there is a causal connection. In order to have correlation it is not enough that the two sets of data should both increase or decrease simultaneously. For correlation it is necessary that one set of facts should have some definite causal dependence upon the other set [...]" (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"Graphic comparisons, wherever possible, should be made in one dimension only." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"If only one scale is used, it should be placed at the left-hand side of the chart. In very large charts it is sometimes desirable to repeat the scale at the right-hand side as well. Where two different units of measurement are used in the scales, the units should be carefully named so that there will be no danger of the reader's using the right-hand and the left-hand scales interchangeably as though they represented the same unit." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"In any chart where index numbers are used the greatest care should be taken to select as unity a set of conditions thoroughly typical and representative. It is frequently best to take as unity the average of a series of years immediately preceding the years for which a study is to be made. The series of years averaged to represent unity should, if possible, be so selected that they will include one full cycle or wave of fluctuation. If one complete cycle involves too many years, the years selected as unity should be taken in equal number on either side of a year which represents most nearly the normal condition." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"In general, the comparison of two circles of different size should be strictly avoided. Many excellent works on statistics approve the comparison of circles of different size, and state that the circles should always be drawn to represent the facts on an area basis rather than on a diameter basis. The rule, however, is not always followed and the reader has no way of telling whether the circles compared have been drawn on a diameter basis or on an area basis, unless the actual figures for the data are given so that the dimensions may be verified." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"In many presentations it is not a question of saving time to the reader but a question of placing the arguments in such form that results may surely be obtained. For matters affecting public welfare, it is hard to estimate the benefits which may accrue if a little care be used in presenting data so that they will be convincing to the reader." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"It is desirable in all chart work to have certain conventions by which colors would be understood to have certain definite meanings. Thus, following railroad practice, red could generally be used in chart work to indicate dangerous or unfavorable conditions, and green to indicate commended features or favorable conditions. Where neither commendation nor adverse criticism is intended, colors such as blue, yellow, brown, etc., could be used." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"It is difficult to make a general rule for determining in any case which is the independent variable and which is the dependent variable. The decision depends entirely on how any set of data is approached and on the habits of mind of the investigator. When time is one of the variables it is usually, but not always, the independent variable." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"It should be a strict rule for all kinds of curve plotting that the horizontal scale must be used. for the independent variable and the vertical scale for the dependent variable. When the curves are plotted by this rule the reader can instantly select a set of conditions from the horizontal scale and read the information from the vertical scale. If there were no rule relating to the arrangement of scales for the independent and dependent variables, the reader would never be able to tell whether he should approach a chart from the vertical scale and read the information from the horizontal scale, or the reverse." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Judgment must be used in the showing of figures in any chart or numerical presentation, so that the figures may not give an appearance of greater accuracy than their method of collection would warrant. Too many otherwise excellent reports contain figures which give the impression of great accuracy when in reality the figures may be only the crudest approximations. Except in financial statements, it is a safe rule to use ciphers whenever possible at the right of all numbers of great size. The use of the ciphers greatly simplifies the grasping of the figures by the reader, and, at the same time, it helps to avoid the impression of an accuracy which is not warranted by the methods of collecting the data." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

 "Misleading figures implying a greater accuracy than justifiable are very often found as a result of the addition of different quantities some of which are large and some small. The small quantities may have a great degree of accuracy, but this does not give accuracy to the sum of all the quantities, for the total cannot be any more accurate than the most inaccurate item included in the total. If a very large item is not accurate within ten thousand, then it is useless to include in the grand total the three right-hand digits which may be obtained as the result of addition. When some of the items included are so small that they are in tens or hundreds, the addition should be made to include all the digits. After the sum is known then all those digits whose accuracy is doubtful in the total should be replaced by ciphers." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Most authors would greatly resent it if they were told that their writings contained great exaggerations, yet many of these same authors permit their work to be illustrated with charts which are so arranged as to cause an erroneous interpretation. If authors and editors will inspect their charts as carefully as they revise their written matter, we shall have, in a very short time, a standard of reliability in charts and illustrations just as high as now found in the average printed page." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"Of course, no two businesses can have identical organizations. The skeleton may be the same, however, and just as the proper study of the functions of the human body begins with the skeleton, so the study of organization should begin with those simple outlines which appear, in the main, in all completely and successfully organized businesses. Very few enterprises are organized properly. Very few have an organization that can be charted at all. That is one reason why there is such inefficiency in industry." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

 "One of a business man's chief assets is his ability to show things to others in their true proportions. He is continually making contrasts, and holding up for comparison different propositions which come up in his daily affairs. The graphic method lends itself admirably to use in making comparisons. It is surprising how much clearer even simple comparisons of only two or three items will appear when their numerical value is put in graphic form rather than in figures."  (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Ordinarily, facts do not speak for themselves. When they do speak for themselves, the wrong conclusions are often drawn from them. Unless the facts are presented in a clear and interesting manner, they are about as effective as a phonograph record with the phonograph missing." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Sometimes the scales of these accompanying charts are so large that the reader is puzzled to get clearly in his mind what the whole chart is driving at. There is a possibility of making a simple chart on such a large scale that the mere size of the chart adds to its complexity by causing the reader to glance from one side of the chart to the other in trying to get a condensed visualization of the chart." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"The title for any chart presenting data in the graphic form should be so clear and so complete that the chart and its title could be removed from the context and yet give all the information necessary for a complete interpretation of the data. Charts which present new or especially interesting facts are very frequently copied by many magazines. A chart with its title should be considered a unit, so that anyone wishing to make an abstract of the article in which the chart appears could safely transfer the chart and its title for use elsewhere." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"The scales of any curve-chart should be so selected that the chart will not be exaggerated in either the horizontal or the vertical direction. It is possible to cause a visual exaggeration of data by carelessly or intentionally selecting a scale which unduly stretches the chart in either the horizontal or the vertical direction. Just as the English language can be used to exaggerate to the ear, so charts can exaggerate to the eye." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"There are a number of comparatively little-known short cuts and convenient methods available in the collection and recording of statistical facts. If obsolete or unsuitable methods are used it may make a difference between success and failure in the work of keeping records of any complex business. When the methods of tabulation are too laborious, not only are the records so extensive as to be in disfavor, but they may occasionally include errors, in spite of the greatest care that can be taken by even the highest grade of employees. Anything which will reduce the amount of mental concentration necessary on the part of persons collecting and tabulating facts, will ordinarily assist-in the production of more accurate final results." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Though graphic presentations are used to a very large extent to-day there are at present no standard rules by which the person preparing a chart may know that he is following good practice. This is unfortunate because it permits everyone making a chart to follow his own sweet will. Many charts are being put out to-day from which it would seem that the person making them had tried deliberately to get up some method as different as possible from any which had ever been used previously." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"Though variety in method of charting is sometimes desirable in large reports where numerous illustrations must follow each other closely, or in wall exhibits where there must be a great number of charts in rapid sequence, it is better in general to use a variety of effects simply to attract attention, and to present the data themselves according to standard well-known methods." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Though accurate data and real facts are valuable, when it comes to getting results the manner of presentation is ordinarily more important than the facts themselves. The foundation of an edifice is of vast importance. Still, it is not the foundation but the structure built upon the foundation which gives the result for which the whole work was planned. As the cathedral is to its foundation so is an effective presentation of facts to the data." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"To summarize - with the ordinary arithmetical scale, fluctuations in large factors are very noticeable, while relatively greater fluctuations in smaller factors are barely apparent. The logarithmic scale permits the graphic representation of changes in every quantity without respect to the magnitude of the quantity itself. At the same time, the logarithmic scale shows the actual value by reference to the numbers in the vertical scale. By indicating both absolute and relative values and changes, the logarithmic scale combines the advantages of both the natural and the percentage scale without the disadvantages of either." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Unlimited numbers of reports, magazines, and newspapers are now giving us reams of quantitative facts. If the facts were put in graphic form, not only would there be a great saving in the time of the readers but there would be infinite gain to society, because more facts could be absorbed and with less danger of misinterpretation. Graphic methods usually require no more space than is needed if the facts are presented in the form of words. In many cases, the graphic method requires less space than is required for words and there is, besides, the great advantage that with graphic methods facts are presented so that the reader may make deductions of his own, while when words are used the reader must usually accept the ready-made conclusions handed to him." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"When large numbers of curves and charts are used by a corporation, it will be found advantageous to have certain standard abbreviations and symbols on the face of the chart so that information may be given in condensed form as a signal to anyone reading the charts." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"When curves become as widely understood as the bar method of presentation, it will be found that curves can be used advantageously in almost every case where it is now common to use either vertical or horizontal bars." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"When plotting any curve the vertical scale should, if possible, be chosen so that the zero of the scale will appear on the chart. Otherwise, the reader may assume the bottom of the chart to be zero and so be grossly misled. Zero should always be indicated by a broad line much wider than the ordinary co-ordinate lines used for the background of the chart." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

✏️Jacques Bertin - Collected Quotes

"A graphic should not only show the leaves, it should show the branches as well as the entire tree." (Jacques Bertin, "The Semiology of Graphics", 1967)

"Graphic representation constitutes one of the basic sign-systems conceived by the human mind for the purposes of storing, understanding, and communicating essential information. As a "language" for the eye, graphics benefits from the ubiquitous properties of visual perception. As a monosemic system, it forms the rational part of the world of images. […] Graphics owes its special significance to its double function as a storage mechanism and a research instrument."  (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"The aim of the graphic is to make the relationship among previously defined sets appear." (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"The great difference between the graphic representation of yesterday, which was poorly dissociated from the figurative image, and the graphics of tomorrow, is the disappearance of the congential fixity of the image. […] When one can superimpose, juxtapose, transpose, and permute graphic images in ways that lead to groupings and classings, the graphic image passes from the dead image, the 'illustration,' to the living image, the widely accessible research instrument it is now becoming. The graphic is no longer only the 'representation' of a final simplification, it is a point of departure for the discovery of these simplifications and the means for their justification. The graphic has become, by its manageability, an instrument for information processing." (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"The plane is the mainstay of all graphic representation. It is so familiar that its properties seem self-evident, but the most familiar things are often the most poorly understood. The plane is homogeneous and has two dimensions. The visual consequences of these properties must be fully explored." (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"The problem that still remains to be solved is that of the orderable matrix, that needs the use of imagination […] When the two components of a data table are orderable, the normal construction is the orderable matrix. Its permutations show the analogy and the complementary nature that exist between the algorithmic treatments and the graphical treatments." (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"There are as many types of questions as components in the information." (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"To analyse graphic representation precisely, it is helpful to distinguish it from musical, verbal and mathematical notations, all of which are perceived in a linear or temporal sequence. The graphic image also differs from figurative representation essentially polysemic, and from the animated image, governed by the laws of cinematographic time. Within the boundaries of graphics fall the fields of networks, diagrams and maps. The domain of graphic imagery ranges from the depiction of atomic structures to the representation of galaxies and extends into the spheres of topography and cartography." (Jacques Bertin, "The Semiology of Graphics" ["Semiologie Graphique"], 1967)

"As with any graphic, networks are used in order to discover pertinent troups of to inform others of the groups and structures discovered. It is a good means of displaying structures, However, it ceases to be a means of discovery when the elements are numerous. The figure rapidly becomes complex, illegible and untransformable." (Jacques Bertin, "Graphics and graphic information processing", 1977)

"Computers are able to multiply useless images without taking into account that, by definition, every graphic corresponds to a table. This table allows you to think about three basic questions that go from the particular to the general level. When this last one receives an answer, you have answers for all of them. Understanding means accessing the general level and discovering significant grouping (patterns). Consequently, the function of a graphic is answering the three following questions:
Which are the X,Y, Z components of the data table? (What it’s all about?)
What are the groups in X, in Y that Z builds? (What the information at the general level is?
What are the exceptions?

"These questions can be applied to every kind of problem. They measure the usefulness of whatever construction or graphical invention allowing you to avoid useless graphics." (Jacques Bertin, [interview] 2003)

"Data is transformed into graphics to understand. A map, a diagram are documents to be interrogated. But understanding means integrating all of the data. In order to do this it’s necessary to reduce it to a small number of elementary data. This is the objective of the 'data treatment' be it graphic or mathematic." (Jacques Bertin, [interview] 2003)

"The use of computers shouldn't ignore the objectives of graphics, that are: 1) Treating data to get information. 2) Communicating, when necessary, the information obtained." (Jacques Bertin, [interview] 2003)

"Graphics is the visual means of resolving logical problems." (Jacques Bertin, "Graphics and Graphic Information Processing", 2011)

✏️Daniel B Carr - Collected Quotes

"Binning has two basic limitations. First, binning sacrifices resolution. Sometimes plots of the raw data will reveal interesting fine structure that is hidden by binning. However, advantages from binning often outweigh the disadvantage from lost resolution. [...] Second, binning does not extend well to high dimensions. With reasonable univariate resolution, say 50 regions each covering 2% of the range of the variable, the number of cells for a mere 10 variables is exceedingly large. For uniformly distributed data, it would take a huge sample size to fill a respectable fraction of the cells. The message is not so much that binning is bad but that high dimensional space is big. The complement to the curse of dimensionality is the blessing of large samples. Even in two and three dimensions having lots of data can bc very helpful when the observations are noisy and the structure non-trivial." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)

"There is an interplay between statistical models and graphics, so it is advantageous to think about models before making a series of plots." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)

"Working with binned data directly addresses large data set issues of computation and plotting speed. Almost everything that can bc done with the original data can be done faster with binned data. Further, working with binned data allows image processing algorithms to be adapted and applied to bin cells. Thus tools can bc brought to bare that are not traditionally associated with exploratory data analysis." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)

"A scatterplot would show the relationship between [...] two variables in more detail, but would not convey the spatial patterns shown in […] micromap panels. Using conditioning to define a comparative grid of panels, […] changes an investigation from a sequential filtering of one variable at a time to more of a multivariable approach. In this context we can assess functional relationships, densities, or geospatial patterns within panels as well as changes across panels." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Another method used to simplify the appearance of a graphic is smoothing. A regression line overlaid on a scatterplot is a smooth representation of the relationship between the two graph variables. For time series data, a moving average of the data over time is often used to smooth out the variation over small time steps in order to illustrate the overall trend." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Designing good visual displays with an easy-to-use interactive system is difficult. The designer’s first attempts will usually fail, so it is critical that proposed systems be tested on at least several sets of typical users. These usability tests help the designer iterate to the best possible system." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Given the small size of micromaps, the blocks of color on choropleth maps have the advantage of being more visible than if the values were displayed by small symbols or hatch patterns on the map. Using highly saturated colors makes small areas stand out even more. On the other hand, the eye can be drawn to large blocks of color that represent small populations […] A micromap re-design may attempt to mitigate this areal bias by increasing the size of small […] states, but the analyst needs to be aware of this potential problem when using micromaps to communicate to others. The conditioned micromap design can partially address this issue by conditioning on population." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Hue is the color dimension that is associated with wavelength of light and with names of colors, such as red, yellow, and blue. Most languages around the world include words for black, white, red, green, yellow, blue, brown, pink, purple, orange, and gray. Differences in hue are best used for encoding different attributes, as in a qualitative graph or unordered variables. Different wavelengths have different focal lengths, so what we 'see' is a compromise between the actual and perceived distance to the image. Most people perceive long-wavelength colors, such as red and orange, as being closer to their eyes than short-wavelength colors, such as blue and green." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"In addition to smoothing boundaries, we can smooth the data. The simultaneous smoothing of variation over space, time, or attributes can help us to see the central patterns that would otherwise be hidden by local variation (noise). Local averaging of values usually can provide less biased estimates of spatial and temporal processes, just as the regression line can provide an unbiased estimate of a linear relationship between variables. However, smoothing can actually mask patterns, particularly important outliers, if we smooth over places that are dissimilar in some relevant attribute." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Micromap graphics differ from most of [other] methodology in two ways. First, by definition, micromaps always include maps among the views of study units. Second, micromaps use different methods to highlight study units. Linked micromaps sort the study units, partition them into small subsets, and systematically highlight these subsets. The conditioned micromaps and many comparative micromaps use a three-class slider to partition." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Much of a statistician’s training, especially in thinking about patterns, is related to the statistical tasks of describing and comparing distributions and to creating and refining models that describe how variables are related. There is little direct focus on the tasks of pattern identification, distribution comparison, and model building in the web page design and usability literature. Instead, that community is more focused on searching for and filtering information, drilling down to find a specific piece of information and navigation on the web. Nonetheless, good tools for one purpose often can be adapted to another purpose." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"People have different approaches to reasoning about data, depending on their skills and experience, but research has shown that there are commonalities in their processing steps. Some researchers call this sense making. A classical statistical analysis is usually straightforward, consisting of sequential steps of experimental design, the conduct of the experiment, and a statistical summary of results. An exploratory analysis is often interactive and less structured. Usually there is a phase of information gathering and preliminary processing, followed by choice of the representation method that will address the question at hand or questions raised by preliminary graphics." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"[…] perceptual accuracy decreases with distance, so columns that are to be compared should be side by side. Current linked micromap software requires the user." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Saturation, also referred to as chroma or intensity, measures the purity of the color. A highly saturated color has little or no gray in it, while a highly desaturated color is almost gray, with none of the original color. You may be more familiar with the term shade, which refers to a mix of pigment and black paint, or tint, a mix of pigment and white paint. We only perceive a few different steps of varying saturation, so changing saturation alone is not effective for encoding a quantitative variable. However, the eye is drawn to highly saturated colors, so these can be used to good effect for drawing attention to a part of the visualization. In addition, highly saturated colors stand out more and so can be used as fill colors to improve the visibility of small symbols or areas." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Scatterplots are the preferred medium for adding smooth curves to show a causal functional relationship or an association […] However, despite the advantage of the scatterplot for seeing some types of patterns, the linked micromap design adds geographic location to the information displayed and so enables searches for geographic patterns that the scatterplot omits." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Statistical models typically decompose observed values into fit and residuals. Mapping fitted values shows broad patterns that may help us to understand and explain the process that generated the data. Mapping residuals can show us a mixture of noise and anomalies. Sometimes we are more interested in the broad patterns, but at other times we wish to identify the anomalies, e.g., where some corrective action needs to be taken." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"The power of graphics to aid understanding is well recognized, but with power comes the risk of misuse. Some people advocate the restriction of graphs and data to avoid misuse or to avoid drawing attention to problems. As educators we seek to provide both tools and education with the hope that learning will continue. Graphics can be misused, but our position is that people can learn from mistakes. We also believe that when many people can see and share perspectives, we are in a better position to see constructively and shape the world." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"The use of color is so fundamental in visualization design that its perception requires an in-depth discussion [...]. Using color well is not easy. Color is one of those concepts that everyone thinks they understand, but that is really more complex than it first appears." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

15 December 2006

✏️Roxy Peck - Collected Quotes

"A graphical display, when used appropriately, can be a powerful tool for organizing and summarizing data. By sacrificing some of the detail of a complete listing of a data set, important features of the data distribution are more easily seen and more easily communicated to others." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"A histogram for discrete numerical data is a graph of the frequency or relative frequency distribution, and it is similar to the bar chart for categorical data. Each frequency or relative frequency is represented by a rectangle centered over the corresponding value (or range of values) and the area of the rectangle is proportional to the corresponding frequency or relative frequency." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"A time-series plot (sometimes also called a time plot) is a simple graph of data collected over time that can be invaluable in identifying trends or patterns that might be of interest.A time-series plot can be constructed by thinking of the data set as a bivariate data set, where y is the variable observed and x is the time at which the observation was made. These (x, y) pairs are plotted as in a scatterplot. Consecutive observations are then connected by a line segment; this aids in spotting trends over time." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"A unimodal histogram that is not symmetric is said to be skewed. If the upper tail of the histogram stretches out much farther than the lower tail, then the distribution of values is positively skewed or right skewed. If, on the other hand, the lower tail is much longer than the upper tail, the histogram is negatively skewed or left skewed." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"A well-designed experiment requires more than just manipulating the explanatory variables; the design must also eliminate other possible explanations or the experimental results will not be conclusive." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Be careful not to confuse clustering and stratification. Even though both of these sampling strategies involve dividing the population into subgroups, both the way in which the subgroups are sampled and the optimal strategy for creating the subgroups are different. In stratified sampling, we sample from every stratum, whereas in cluster sampling, we include only selected whole clusters in the sample. Because of this difference, to increase the chance of obtaining a sample that is representative of the population, we want to create homogeneous groups for strata and heterogeneous (reflecting the variability in the population) groups for clusters." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Bias in sampling is the tendency for samples to differ from the corresponding population in some systematic way. Bias can result from the way in which the sample is selected or from the way in which information is obtained once the sample has been chosen. The most common types of bias encountered in sampling situations are selection bias, measurement or response bias, and nonresponse bias." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Descriptive statistics is the branch of statistics that includes methods for organizing and summarizing data. Inferential statistics is the branch of statistics that involves generalizing from a sample to the population from which the sample was selected and assessing the reliability of such generalizations." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Pie charts can be used effectively to summarize a single categorical data set if there are not too many different categories. However, pie charts are not usually the best tool if the goal is to compare groups on the basis of a categorical variable." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Populations with no variability are exceedingly rare, and they are of little statistical interest because they present no challenge! In fact, variability is almost universal. It is variability that makes life (and the life of a statistician, in particular) interesting. We need to understand variability to be able to collect, describe, analyze, and draw conclusions from data in a sensible way." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"[… ] statistics is about understanding the role that variability plays in drawing conclusions based on data. […] Statistics is not about numbers; it is about data - numbers in context. It is the context that makes a problem meaningful and something worth considering." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Statistics is the scientific discipline that provides methods to help us make sense of data. Statistical methods, used intelligently, offer a set of powerful tools for gaining insight into the world around us." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"The goal of random sampling is to produce a sample that is likely to be representative of the population. Although random sampling does not guarantee that the sample will be representative, it does allow us to assess the risk of an unrepresentative sample. It is the ability to quantify this risk that will enable us to generalize with confidence from a random sample to the corresponding population." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"The use of the density scale to construct the histogram ensures that the area of each rectangle in the histogram will be proportional to the corresponding relative frequency. The formula for density can also be used when class widths are equal. However, when the intervals are of equal width, the extra arithmetic required to obtain the densities is unnecessary." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

14 December 2006

✏️Robert L Harris - Collected Quotes

"A coordinate is a number or value used to locate a point with respect to a reference point, line, or plane. Generally the reference is zero. […] The major function of coordinates is to provide a method for encoding information on charts, graphs, and maps in such a way that viewers can accurately decode the information after the graph or map has been generated."  (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"Although in most cases the actual value designated by a bar is determined by the location of the end of the bar, many people associate the length or area of the bar with its value. As long as the scale is linear, starts at zero, is continuous, and the bars are the same width, this presents no problem. When any of these conditions are changed, the potential exists that the graph will be misinterpreted." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)

"Area graphs are generally not used to convey specific values. Instead, they are most frequently used to show trends and relationships, to identify and/or add emphasis to specific information by virtue of the boldness of the shading or color, or to show parts-of-the-whole." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"As a general rule, the fewer the time intervals used in the averaging process, the more closely the moving average curve resembles the curve of the actual data. Conversely, the greater the number of intervals, the smoother the moving average curve. […] Moving average curves tend to have a delayed reaction to changes." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"Grouped area graphs sometimes cause confusion because the viewer cannot determine whether the areas for the data series extend down to the zero axis. […] Grouped area graphs can handle negative values somewhat better than stacked area graphs but they still have the problem of all or portions of data curves being hidden by the data series towards the front." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)

"Standard quantile graphs offer certain advantages over cumulative percent frequency graphs. Among these advantages are ease of construction, actual data points are shown as opposed to summaries of class intervals, no decisions are required as to what the best size class interval might be, the same curve functions as a less-than and greater-than curve, and the actual maximum and minimum values are shown on the graph." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)

"Technically, there is no limit as to the number of data series that can be plotted on a single graph. Practically, if the number goes above three or four the graph becomes confusing." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"When analyzing data it is many times advantageous to generate a variety of graphs using the same data. This is true whether there is little or lots of data. Reasons for this are: (1) Frequently, all aspects of a group of data can not be displayed on a single graph. (2) Multiple graphs generally result in a more in-depth understanding of the information. (3) Different aspects of the same data often become apparent. (4) Some types of graphs cause certain features of the data to stand out better (5) Some people relate better to one type of graph than another." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"When approximations are all that are needed, stacked area graphs are usually adequate. When accuracy is desired, this type of graph is generally not used, particularly when the values fluctuate significantly and/or the slopes of the curves are steep." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

13 December 2006

✏️Kate Strachnyi - Collected Quotes

"As beautiful as data can be, it’s not an al fresco painting that should be open to interpretation from anyone who walks by its section of the museum. Make bold, smart color choices that leave no doubt what the purpose of the data is." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Blue is a nice color for a lot of things, but it’s tough for people to tell the difference between shades of blue in a report. Light blue and dark blue and royal blue and navy blue have a tendency to run together, so differing shades are not going to make that big of a difference for audience members trying to unspool what’s being presented. The same goes for other colors: it’s not that easy for humans to tell the difference between varying shades of the same color (unless they are drastic)." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Colors and numbers are much more similar than we think. Using contrasting colors on different forms of information allows your audience to make a very clear delineation between the two, even when the setup and style are completely the same." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Color is by far the most abused and neglected tool in data visualization. We abuse it by making color choices that make no sense, and we neglect it when we populate our hard work with software default settings, which are a good place to start but can be customized to suit your needs. [...] Color - if used prudently - makes our visualizations more digestible and more informative." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data storytelling is a method of communicating information that is custom-fit for a specific audience and offers a compelling narrative to prove a point, highlight a trend, make a sale, or all of the above. [...] Data storytelling combines three critical components, storytelling, data science, and visualizations, to create not just a colorful chart or graph, but a work of art that carries forth a narrative complete with a beginning, middle, and end." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data visualization is the practice of taking insights found in data analysis and turning them into numbers, graphs, charts, and other visual concepts to make them easier to grasp, understand, learn from, and utilize.[...] The visualization of data can be thought of as both a science and an art in that the way it is displayed is often as important to its understanding as the actual information that is being displayed." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Good data stories have three key components: data, narrative, and visuals. [...] The data part is fairly obvious - data has to be accurate for the correct insights to be achieved. The narrative has to give a voice to the data in simple language, turning each data point into a character in the story with its own tale to tell. The visuals are what we are most concerned about. They have to allow us to be able to find trends and patterns in our datasets and do so easily and specifically. The last thing we want is for the most important points to be buried in rows and columns." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"One tip to keep an audience focused on your story without overwhelming them is to reduce the saturation of the colors [...] When you lower the brightness and intensity, you are reducing the cognitive load that your audience has to bear. [...] Regardless of what combinations you decide on, you need to avoid pure colors that are bright and saturated." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Our machines are helpers, not decision makers. Their insights are not the final word in the discussion, merely the work of our most nimble observers who can ramp up time spent on analysis by factors that our counterparts even a generation ago would have a hard time believing." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Sometimes, adding a divider to a visualization can help transform it from something that’s difficult to understand into a more effective visual." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"The lack of focus and commitment to color is a perplexing thing. When used correctly, color has no equal as a visualization tool - in advertising, in branding, in getting the message across to any audience you seek. Data analysts can make numbers dance and sing on command, but they sometimes struggle to create visually stimulating environments that convince the intended audience to tap their feet in time." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"The practice of finding relationships between different sets of data - also known as correlations - is the bread and butter of what data analysis, and by proxy data visualization, is all about." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Visualizations can remove the background noise from enormous sets of data so that only the most important points stand out to the intended audience. This is particularly important in the era of big data. The more data there is, the more chance for noise and outliers to interfere with the core concepts of the data set." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"When the colors are dull and neutral, they can communicate a sense of uniformity and an aura of calmness. Grays do a great job of mapping out the context of your story so that the more sharp colors highlight what you’re trying to explain. The power of gray comes in handy for all of our supporting details such as the axis, gridlines, and nonessential data that is included for comparative purposes. By using gray as the primary color in a visualization, we automatically draw our viewers’ eyes to whatever isn’t gray. That way, if we are interested in telling a story about one data point, we can do so quite easily."  (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

✏️Anna C Rogers - Collected Quotes

"A drawing can show a true picture of both the situation as a whole and its separate components at a glance, and do the job better than could figures or the spoken word. In its essence, a chart is a medium of communication conveying a thought, an idea, a situation from one mind to another and not a work of art or a statistical table. The simpler, the more direct it is, the better it will perform that service which is its sole function." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Although flow charts are not used to portray or interpret statistical data, they possess definite utility for certain kinds of research and administrative problems. With a well-designed flow chart it is possible to present a large number of facts and relationships simply, clearly, and accurately, without resorting to extensive or involved verbal description." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Circles of different size, however cannot properly be used to compare the size of different totals. This is because the reader does not know whether to compare the diameters or the areas (which vary as the squares of the diameters), and is likely to misjudge the comparison in either ease. Usually the circles are drawn so that their diameters are in correct proportion to each other; but then the area comparison is exaggerated. Component bars should be used to show totals of different size since their one dimension lengths can be easily judged not only for the totals themselves but for the component parts as well. Circles, therefore, can show proportions properly by variations in angles of sectors but not by variations in diameters."  (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Correct emphasis is basic to effective graphic presentation. Intensity of color is the simplest method of obtaining emphasis. For most reproduction purposes black ink on a white page is most generally used.  Screens, dots and lines can, of course, be effectively used to give a gradation of tone from light grey to solid black. When original charts are the subjects of display presentation, use of colors is limited only by the subject and the emphasis desired." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"In line charts the grid structure plays a controlling role in interpreting facts. The number of vertical rulings should be sufficient to indicate the frequency of the plottings, facilitate the reading of the time values on the horizontal scale. and indicate the interval or subdivision of time." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Many people use statistics as a drunkard uses a street lamp - for support rather than illumination. It is not enough to avoid outright falsehood; one must be on the alert to detect possible distortion of truth. One can hardly pick up a newspaper without seeing some sensational headline based on scanty or doubtful data." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Pie charts have weaknesses and dangers inherent in their design and application. First, it is generally inadvisable to attempt to portray more than four or five categories in a circle chart, especially if several small sectors are of approximately the same size.  It may be very confusing to differentiate the relative values. Secondly, the pie chart loses effectiveness if an effort is made to compare the component values of several circles, as might occur in a temporal or geographical series. [...] Thirdly, although values are measured by distances along the arc of the circle, there is a tendency to estimate values in terms of areas by size of angle. The 100-percent bar chart is often preferable to the circle chart's angle and area comparison as it is easier to divide into parts, more convenient to use, has sections that may be shaded for contrast with grouping possible by bracketing, and has an easily readable percentage scale outside the bars." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Simplicity, accuracy. appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Since bars represent magnitude by their length, the zero line must be shown and the arithmetic scale must not be broken. Occasionally an excessively long bar in a series of bars may be broken off at the end, and the amount involved shown directly beyond it, without distorting the general trend of the other bars, but this practice applies solely when only one bar exceeds the scale." (Anna C Rogers, "Graphic Charts Handbook", 1961)

 "The common bar chart is particularly appropriate for comparing magnitude or size of coordinate items or parts of a total. It is one of the most useful, simple, and adaptable techniques in graphic presentation. The basis of comparison in the bar chart is linear or one-dimensional. The length of each bar or of its components is proportional to the quantity or amount of each category represented." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The fact that index numbers attempt to measure changes of items gives rise to some knotty problems. The dispersion of a group of products increases with the passage of time, principally because some items have a long-run tendency to fall while others tend to rise. Basic changes in the demand is fundamentally responsible. The averages become less and less representative as the distance from the period increases." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The impression created by a chart depends to a great extent on the shape of the grid and the distribution of time and amount scales. When your individual figures are a part of a series make sure your own will harmonize with the other illustrations in spacing of grid rulings, lettering, intensity of lines, and planned to take the same reduction by following the general style of the presentation." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The ratio chart not only correctly represents relative changes but also indicates absolute amounts at the same time. Because of its distinctive structure, it is referred to as a semilogarithmic chart. The vertical axis is ruled logarithmically and the horizontal axis arithmetically. The continued narrowing of the spacings of the scale divisions on the vertical axis is characteristic of logarithmic rulings; the equal intervals on the horizontal axis are indicative of arithmetic rulings." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Without adequate planning, it is seldom possible to achieve either proper emphasis of each component element within the chart or a presentation that is pleasing in its entirely. Too often charts are developed around a single detail without sufficient regard for the work as a whole. Good chart design requires consideration of these four major factors: (1) size, (2) proportion, (3) position and margins, and (4) composition." (Anna C Rogers, "Graphic Charts Handbook", 1961)

12 December 2006

✏️Peter H Selby - Collected Quotes

"A graph presents a limited number of figures in a bold and forceful manner. To do this it usually must omit a large number of figures available on the subject. The choice of what graphic format to use is largely a matter of deciding what figures have the greatest significance to the intended reader and what figures he can best afford to skip." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"A statistical table is a systematic arrangement of numerical data in columns and rows. Its purpose is to show quantitative facts clearly, concisely, and effectively. It should facilitate an understanding of the logical relationships among the numbers presented. Tables are used in the compilation of raw data, in the summarizing and analytic processes, and in the presentation of statistics in final form. A good table is the product of careful thinking and hard work. It is not just a package of figures put into neat compartments and ruled to make it look more attractive. It contains carefully selected data put together with thought and ingenuity to serve a specific purpose." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Pie charts are awkward to label and do not fit as well on a report page as bar comparisons (vertical or horizontal). Thus a series of pies is less effective than a series of subdivided bars (or columns) for comparing a group of subdivided totals. Several pies require much more space than several bars. Moreover, the comparable components often are in a different location in each pie and so are hard to compare." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Probably one of the most common misuses (intentional or otherwise) of a graph is the choice of the wrong scale - wrong, that is, from the standpoint of accurate representation of the facts. Even though not deliberate, selection of a scale that magnifies or reduces - even distorts - the appearance of a curve can mislead the viewer." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Remember, the primary function of a graph of any kind is to illustrate the relationship between two variables. [...] To draw any graph we must have established some relationship between the two variables. This relationship can be in the form of a formula (equation is the more mathematical term), as we have just seen, or simply a set of observations, as is common in all types of statistical work. Sometimes we develop set of observations and then try to find an equation that expresses, in mathematical language, the relationship between the two variables." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Tables are [...] the backbone of most statistical reports. They provide the basic substance and foundation on which conclusions can be based. They are considered valuable for the following reasons: (1) Clarity - they present many items of data in an orderly and organized way. (2) Comprehension - they make it possible to compare many figures quickly. (3) Explicitness - they provide actual numbers which document data presented in accompanying text and charts. (4) Economy - they save space, and words. (5) Convenience - they offer easy and rapid access to desired items of information." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"The circle graph, or pie chart, appears to simple and 'nonstatistical', so it is a popular form of presentation for general readers. However, since the eye can compare linear distances more easily and accurately than angles or areas, the component parts of a total usually can be shown more effectively in a chart using linear measurement." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

11 December 2006

✏️Bruce Robertson - Collected Quotes

"A chart is a bridge between you and your readers. It reveals your skills at comprehending the source information, at mastering presentation methods and at producing the design. Its success depends a great deal on your readers' understanding of what you are saying, and how you are saying it. Consider how they will use your chart. Will they want to find out from it more information about the subject? Will they just want a quick impression of the data? Or will they use it as a source for their own analysis? Charts rely upon a visual language which both you and your readers must understand." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Charts and diagrams are the visual presentation of information. Since text and tables of information require close study to obtain the more general impressions of the subject, charts can be used to present readily understandable, easily digestible and, above all, memorable solutions." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Charts offer opportunities to distort information, to misinform. An old adage can be extended to read: 'There are lies, damned lies, statistics and charts'. Our visual impressions are often more memorable than our understanding of the facts they describe. [...] Never let your design enthusiasms overrule your judgement of the truth." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Maps containing marks that indicate a variety of features at specific locations are easy to produce and often revealing for the reader. You can use dots, numbers, and shapes, with or without keys. The basic map must always be simple and devoid of unnecessary detail. There should be no ambiguity about what happens where." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Maps used as charts do not need fine cartographic detail. Their purpose is to express ideas, explain relationships, or store data for consultation. Keep your maps simple. Edit out irrelevant detail. Without distortion, try to present the facts as the main feature of your map, which should serve only as a springboard for the idea you're trying to put across." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Scatter charts show the relationships between information, plotted as points on a grid. These groupings can portray general features of the source data, and are useful for showing where correlationships occur frequently. Some scatter charts connect points of equal value to produce areas within the grid which consist of similar features." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Wherever information has to be presented, charts offer an alternative to text and tables of figures. They are concise, memorable often intelligible without language, and can make significant additions to the story." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

✏️Calvin F Schmid - Collected Quotes

"Although the pie or sector chart ranks very high in popular appeal, it is held in rather low esteem by many specialists in graphic presentation. Since the pie chart possesses more weaknesses perhaps than most graphic forms, it is especially important to observe proper discretion in its construction and application. The pie chart is used to portray component relations. The various sectors of a circle represent component parts of an aggregate or total." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"An organization chart portrays every essential part of an organization in its proper relation to all other parts. More specifically, it shows the relation of one official or department or function to another; titles and sometimes names of officials, and names of departments and their functions; and sources, lines, and types of authority." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954) 

"As a general rule it is recommended that the bar chart be used for simple comparison, particularly if there are more than four or five categories." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"Charts and graphs represent an extremely useful and flexible medium for explaining, interpreting, and analyzing numerical facts largely by means of points, lines, areas, and other geometric forms and symbols. They make possible the presentation of quantitative data in a simple, clear, and effective manner and facilitate comparison of values, trends, and relationships. Moreover, charts and graphs possess certain qualities and values lacking in textual and tabular forms of presentation." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"First, it is generally inadvisable to attempt to portray a series of more than four or five categories by means of pie charts. If, for example, there are six, eight, or more categories, it may be very confusing to differentiate the relative values portrayed, especially if several small sectors are of approximately the same size. Second, the pie chart may lose its effectiveness if an attempt is made to compare the component values of several circles, as might be found in a temporal or geographical series. In such case the one-hundred percent bar or column chart is more appropriate. Third, although the proportionate values portrayed in a pie chart are measured as distances along arcs about the circle, actually there is a tendency to estimate values in terms of areas of sectors or by the size of subtended angles at the center of the circle." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"The bar chart is one of the most useful, simple, adaptable, and popular techniques in graphic presentation. The simple bar chart. with its many variations, is particularly appropriate for comparing the magnitude, or size, of coordinate items or of parts of a total. The basis of comparison in the bar chart is linear or one-dimensional. The length of each bar or of its components is proportional to the quantity or amount of each category' represented. " (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data, the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"The trilinear chart is used to portray simultaneously three variables expressed in the form of elements or components of a total. It is characteristically a one-hundred percent chart, since the sum of the three values indicated is equal to 100 percent. The trilinear chart is drawn in the form of an equilateral triangle, each side of which is calibrated in equal percentage divisions ranging from zero to 100. The rulings are projected across the chart parallel to the sides in the manner of coordinates." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"Where the values of a series are such that a large part the grid would be superfluous, it is the practice to break the grid thus eliminating the unused portion of the scale, but at the same time indicating the zero line. Failure to include zero in the vertical scale is a very common omission which distorts the data and gives an erroneous visual impression." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

10 December 2006

✏️Linda Reynolds - Collected Quotes

"As a general rule, headings should not be centred. The eyes tend to move automatically to the left hand margin at the end of each line, and centred headings are therefore likely to interrupt the smooth flow of reading. They may even be missed altogether." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"In the case of graphs, the number of lines which can be included on any one illustration will depend largely on how close the lines are and how often they cross one another. Three or four is likely to be the maximum acceptable number. In some instances, there may be an argument for using several graphs with one line each as opposed to one graph with multiple lines. It has been shown that these two arrangements are equally satisfactory if the user wishes to read off the value of specific points; if, however, he wishes to compare the lines, than the single multi-line graph is superior." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"In order to be easily understood, a display of information must have a logical structure which is appropriate for the user's knowledge and needs, and this structure must be clearly represented visually. In order to indicate structure, it is necessary to be able to emphasize, divide and relate items of information. Visual emphasis can be used to indicate a hierarchical relationship between items of information, as in the case of systems of headings and subheadings for example. Visual separation of items can be used to indicate that they are different in kind or are unrelated functionally, and similarly a visual relationship between items will imply that they are of a similar kind or bear some functional relation to one another. This kind of visual 'coding' helps the reader to appreciate the extent and nature of the relationship between items of information, and to adopt an appropriate scanning strategy." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The basic principle which should be observed in designing tables is that of grouping related data, either by the use of space or, if necessary, rules. Items which are close together will be seen as being more closely related than items which are farther apart, and the judicious use of space is therefore vitally important. Similarly, ruled lines can be used to relate and divide information, and it is important to be sure which function is required. Rules should not be used to create closed compartments; this is time-wasting and it interferes with scanning." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The ease and speed with which tables can be understood depends very much on the tabulation logic. The author must ask himself what information the reader already has when he consults a particular table, and what information he is seeking from it. The row and column headings should relate to the information he already has, thus leading him to the information he seeks which is displayed in the body of the table." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The effective communication of information in visual form, whether it be text, tables, graphs, charts or diagrams, requires an understanding of those factors which determine the 'legibility', 'readability' and 'comprehensibility', of the information being presented. By legibility we mean: can the data be clearly seen and easily read? By readability we mean: is the information set out in a logical way so that its structure is clear and it can be easily scanned? By comprehensibility we mean: does the data make sense to the audience for whom it is intended? Is the presentation appropriate for their previous knowledge, their present information needs and their information processing capacities?" (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The frequency of labelled scale calibrations on the axes of a graph can significantly affect the accuracy with which it is interpreted. As little interpolation as possible should be required of the user, in order to minimise errors. If single units cannot be marked, it has been suggested that multiples of 2,5 or 10 should be used." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The space between columns, on the other hand, should be just sufficient to separate them clearly, but no more. The columns should not, under any circumstances, be spread out merely to fill the width of the type area. […] Sometimes, however, it is difficult to avoid undesirably large gaps between columns, particularly where the data within any given column vary considerably in length. This problem can sometimes be solved by reversing the order of the columns […]. In other instances the insertion of additional space after every fifth entry or row can be helpful, […] but care must be taken not to imply that the grouping has any special meaning." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The plotted points on a graph should always be made to stand out well. They are, after all, the most important feature of a graph, since any lines linking them are nearly always a matter of conjecture. These lines should stop just short of the plotted points so that the latter are emphasised by the space surrounding them. Where a point happens to fall on an axis line, the axis should be broken for a short distance on either side of the point." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The practice of framing an illustration with a drawn rectangle is not recommended. This kind of typographic detailing should never be added purely for aesthetic reasons or for decoration. A simple, purely functional drawing will automatically be aesthetically pleasing. Unnecessary lines usually reduce both legibility and attractiveness." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Wherever possible, numerical tables should be explicit rather than implicit, i.e. the information should be given in full. In an implicit table, the reader may be required to add together two values in order to obtain a third which is not explicitly stated in the table. […] Implicit tables save space, but require more effort on the part of the reader and may cause confusion and errors. They are particularly unsuitable for slides and other transient displays." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

✏️Forrest W Young - Collected Quotes

"A boxplot is a dotplot enhanced with a schematic that provides information about the center and spread of the data, including the median, quartiles, and so on. This is a very useful way of summarizing a variable's distribution. The dotplot can also be enhanced with a diamond-shaped schematic portraying the mean and standard deviation (or the standard error of the mean)." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"A scatterplot reveals the strength and shape of the relationship between a pair of variables. A scatterplot represents the two variables by axes drawn at right angles to each other, showing the observations as a cloud of points, each point located according to its values on the two variables. Various lines can be added to the plot to help guide our search for understanding." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"A statistical hypothesis is a statement that specifies a set of possible distributions of the data variable x. In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a conjectured alternative hypothesis. Confirmatory statistics used the formalisms of mathematical proofs, theorems, derivations, and so on, to provide a firm mathematical foundation for hypothesis testing."(Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"After all, we do agree that statistical data analysis is concerned with generating and evaluating hypotheses about data. For us, generating hypotheses means that we are searching for patterns in the data - trying to 'see what the data seem to say'. And evaluating hypotheses means that we are seeking an explanation or at least a simple description of what we find - trying to verify what we believe we see." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Commonly, data do not make a clear and unambiguous statement about our world, often requiring tools and methods to provide such clarity. These methods, called statistical data analysis, involve collecting, manipulating, analyzing, interpreting, and presenting data in a form that can be used, understood, and communicated to others." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Exploring data generates hypotheses about patterns in our data. The visualizations and tools of dynamic interactive graphics ease and improve the exploration, helping us to 'see what our data seem to say'." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Histograms and frequency polygons display a schematic of a numeric variable's frequency distribution. These plots can show us the center and spread of a distribution, can be used to judge the skewness, kurtosis, and modicity of a distribution, can be used to search for outliers, and can help us make decisions about the symmetry and normality of a distribution." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Linking is a powerful dynamic interactive graphics technique that can help us better understand high-dimensional data. This technique works in the following way: When several plots are linked, selecting an observation's point in a plot will do more than highlight the observation in the plot we are interacting with - it will also highlight points in other plots with which it is linked, giving us a more complete idea of its value across all the variables. Selecting is done interactively with a pointing device. The point selected, and corresponding points in the other linked plots, are highlighted simultaneously. Thus, we can select a cluster of points in one plot and see if it corresponds to a cluster in any other plot, enabling us to investigate the high-dimensional shape and density of the cluster of points, and permitting us to investigate the structure of the disease space." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"The simplest and most common way to represent the empirical distribution of a numerical variable is by showing the individual values as dots arranged along a line. The main difficulty with this plot concerns how to treat tied values. We usually don't want to represent them by the same point, since that means that the two values look like one. What we can do is 'jitter' the points a bit (i.e., move them back and forth at right angles to the plot axis) so that all points are visible. […] In addition to permitting you to identify individual points, dotplots allow you to look into some of the distributional properties of a variable. […] Dotplots can also be good for looking for modality. " (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"The way that the model differs from the data gives us clues about how we can improve our model. We can use mosaic displays to find the specific ways in which the model is different from the data, since mosaics show the residuals (or differences) of the cells with respect to the model. Looking at these differences, we can observe patterns in the deviation that will help us in our search." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Transforming data to measurements of a different kind can clarify and simplify hypotheses that have already been generated and can reveal patterns that would otherwise be hidden." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"One of the main problems with the visual approach to statistical data analysis is that it is too easy to generate too many plots: We can easily become totally overwhelmed by the shear number and variety of graphics that we can generate. In a sense, we have been too successful in our goal of making it easy for the user: Many, many plots can be generated, so many that it becomes impossible to understand our data." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

✏️Vidya Setlur - Collected Quotes

"A semantic approach to visualization focuses on the interplay between charts, not just the selection of charts themselves. The approach unites the structural content of charts with the context and knowledge of those interacting with the composition. It avoids undue and excessive repetition by instead using referential devices, such as filtering or providing detail-on-demand. A cohesive analytical conversation also builds guardrails to keep users from derailing from the conversation or finding themselves lost without context. Functional aesthetics around color, sequence, style, use of space, alignment, framing, and other visual encodings can affect how users follow the script." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"A well-designed dashboard needs to provide a similar experience; information cannot be placed just anywhere on the dashboard. Charts that relate to one another are usually positioned close to one another. Important charts often appear larger and more visually prominent than less important ones. In other words, there are natural sizes for how a dashboard comprises charts based on the task and context." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Aligning on data ink can be a powerful way to build relationships across charts. It can be used to obscure the lines between charts, making the composition feel more seamless. [....] Alignment paradigms can also influence the layout design needed. [...] The layout added to the alignment further supports this relationship." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Annotations are in-chart clarifiers. They identify salient points within the visualization using placement as a primary attribute in their understanding. They call out peaks, averages, or notable reference points." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"As we enter into certain types of analytical conversations, we expect the conversations to flow in a predictable and cohesive manner. A KPI dashboard, for example, uses redundant structures across specific dimensions or measures to convey information. A dashboard with a top-down exposition style provides high-level information first and clarifies downward, while a bottom-up dashboard starts with the details and clarifies them against the larger picture." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Beyond basic charts, practitioners must also learn to compose visualizations together elegantly. The perceptual stage focuses on making the literal charts more precise as well as working to de-emphasize the entire piece. Design choices start to consider distractions, reducing visual clutter and centering on the message. Minimalism is espoused as a core value with an emphasis on shifting toward precision as accuracy. This is the most common next step for practitioners. Minimalism is also a key stage in maturation. It is experimentation at one extreme that helps practitioners distill down to core, shared practices." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Beyond the design of individual charts, the sequence of data visualizations creates grammar within the exposition. Cohesive visualizations follow common narrative structures to fully express their message. Order matters."  (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Conversational repair is the process people use to detect and resolve problems in communicating, receiving, and understanding. Through repair, participants in social interaction display how they establish and maintain communication and mutual understanding. Language interpretation formalizes multiple levels of repair, from monitoring and evaluating various benchmarks of accuracy to proper ways to intervene and seek clarification." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Charts abstract information. They make it easier to see patterns at a distance, compare, and extrapolate. Icon encodings are graphical elements that are often used to visually represent the semantic meaning of marks for categorical data. Assigning meaningful icons to display elements helps the user perceive and interpret the visualization easier." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Chart choices can also create weight within the entire composition. Presenting information as a comprehensive visualization, such as in a dashboard, requires thinking beyond individual charts. In writing, we not only craft sentences, but write the composition as an entire piece. Certain sentences may drive the writing more, but all sentences play a role in conveying the message." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Cohesion means ideas work together to build a unified whole, which helps conversation interlink in purposeful ways, and the basic parts adhere to grammar." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Coloring needs to be semantically relevant and is also defined by the context." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Communicating data through functionally aesthetic charts is not only about perception and precision but also understanding." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Communication requires the ability to expand or contract a message based on norms within a given culture or language. Expansion provides more detail, sometimes adding in information that is culturally relevant or needed for the person to understand. Contraction preserves the same intent but discards information that isn't needed by that person. Some concepts in certain situations require greater detail than others." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Data that is well prepared makes the analysis easier and allows a deeper exploration of patterns. It helps the analyst sift through the data with less friction. Data that is well crafted holds up to rigorous analysis and presentation. It removes the wall between us and the data and allows us to see the patterns. Well-shaped data isn't only functional, it's also aesthetic." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Design choices include more deliberate thought put into resizing, cropping, simplifying, and enhancing information within the limited real estate. These thumbnails need to be visually interpretable, yet inviting and engaging to the audience." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Functionally aesthetic charts take categories, place, time, and numbers, weaving patterns and stories in creative ways. Data often loses precision when interacting in the real world." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"In practice, selecting charts may include effectiveness, user comfort, surrounding charts, text, software complexities of making the chart, how the data fits the chart, and what to expect if the chart continues to update on its own. Practitioners may choose a less-effective chart for a variety of reasons or may spread a task across several charts."(Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Knowing the semantics of your data helps with sensible data transformations." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Like multimodal reading, data literacy relies on both primary literacy skills and numeracy skills to truly make sense of the third layer: reading and understanding graphs. Charts codify numbers visually into parameters, using stylized marks to embed additional layers of meaning and space to provide quantitative relationships. Beyond the individual chart, data visualizations create ensembles of charts." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Maps are a type of chart that can convey relationships about space and relationships between objects that we relate to in the real world. Their effectiveness as a communication medium is strongly influenced by a host of factors: the nature of spatial data, the form and structure of representation, their intended purpose, the experience of the audience, and the context in the time and space in which the map is viewed. In other words, maps are a ubiquitous representation of spatial information that we can understand and relate to." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Positive and negative space help create balance, but they also draw interest." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Semantic use of color supports the understanding of what the visualization is conveying. When color is used for a specific paradigm, those using the visualization can follow that paradigm. One paradigm might be using a specific color to highlight selections on an otherwise monochrome visualization. In others, color may be categorical but match associations with the time of day [...]. Color can also help direct attention to differences in the data." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Sequencing is relevant to all visualization (not just instructions) because the author can use graphics and conventions to sequence the reading of visualizations. Annotations, in particular, can be used very effectively to teach conventions and to influence sequencing." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Text should be treated as a first-class citizen, just like any chart type. The thoughtful placement of text along with its encodings of shape and color determine the visualization's layout, structure, and flow." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"The effective depiction of an icon often depends on how semantically resonant the image is to the information it represents. The use of icons in charts depends on various factors, including task, how representative they are of the underlying data, and their general recognizability." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"The rise of graphicacy and broader data literacy intersects with the technology that makes it possible and the critical need to understand information in ways current literacies fail. Like reading and writing, data literacy must become mainstream to fully democratize information access." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"The sizes of charts in space reflect how we convey information to a reader. In a dashboard context, the content, size, and space that the various charts occupy should reflect the form and function of the main message. As you saw with the bento box metaphor from the introduction, there needs to be deliberate thought put into the placement and size of each individual chart so that they all work together in harmony." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"[...] to support a conversation, charts need to provide cohesive and relevant responses to a user's intent. Sometimes the interface needs to respond by changing the visual encoding of existing charts, while in other cases, it is necessary to create a new chart to support the analytical conversation. In addition to appropriate visualization responses, it is critical to help the user understand how the system has interpreted their intent by producing appropriate feedback and allowing them to clarify if necessary." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Understanding language goes hand in hand with the ability to integrate complex contextual information into an effective visualization and being able to converse with the data interactively, a term we call analytical conversation. It also helps us think about ways to create artifacts that support and manage how we converse with machines as we see and understand data."(Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Understanding the context and the domain of the data is important to help disambiguate concepts. While reasonable defaults can be used to create a visualization, there should be no dead ends. Provide affordances for a user to understand, repair, and refine." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Using symbols is one common way of applying semantics to help make sense of the world. Symbols provide clues to understanding experiences by conveying recognizable meanings that are shared by societies." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Visualizations are abstractions, relying on primary graphicacy skills to fully understand the composition." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"When dealing with meaningful visual representation, aspects of a representation's meaning can be altered by modifying its visual characteristics; these characteristics are extensively explored in semiotics, the study of signs and symbols and their use or interpretation." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"We define analytical intent to be the goal that a consumer or analyst focuses on when performing either targeted or more open-ended data exploration and discovery. Analytical intent is expressed as part of a conversation between the user and a visualization interface." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"When integrating written text with charts in a functionally aesthetic way, the reader should be able to find the key takeaways from the chart or dashboard, taking into account the context, constraints, and reading objectives of the overall message."  (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

✏️Jenny Freeman - Collected Quotes

"Colour can be used to highlight text within a slide but care should be taken to not get carried away with lots of different colours. No more than three colours should be used on a single slide. It is important to consider the combination of colours to be used, as some colours work well together whilst others do not." (Jenny Freeman et al, "How to Display Data", 2008)

"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)

"Numerical precision should be consistent throughout and summary statistics such as means and standard deviations should not have more than one extra decimal place (or significant digit) compared to the raw data. Spurious precision should be avoided although when certain measures are to be used for further calculations or when presenting the results of analyses, greater precision may sometimes be appropriate." (Jenny Freeman et al, "How to Display Data", 2008)

"One of the easiest ways to display data badly is to display as little information as possible. This includes not labelling axes and titles adequately, and not giving units. In addition, information that is displayed can be obscured by including unnecessary and distracting details." (Jenny Freeman et al, "How to Display Data", 2008)

"Plotting data is a useful first stage to any analysis and will show extreme observations together with any discernible patterns. In addition the relative sizes of categories are easier to see in a diagram (bar chart or pie chart) than in a table. Graphs are useful as they can be assimilated quickly, and are particularly helpful when presenting information to an audience. Tables can be useful for displaying information about many variables at once, while graphs can be useful for showing multiple observations on groups or individuals. Although there are no hard and fast rules about when to use a graph and when to use a table, in the context of a report or a paper it is often best to use tables so that the reader can scrutinise the numbers directly." (Jenny Freeman et al, "How to Display Data", 2008)

"Well-displayed data can clearly illuminate and enhance the interpretation of a study, while badly laid out data and results can obscure the message or at worst seriously mislead." (Jenny Freeman et al, "How to Display Data", 2008)

"When displaying information visually, there are three questions one will find useful to ask as a starting point. Firstly and most importantly, it is vital to have a clear idea about what is to be displayed; for example, is it important to demonstrate that two sets of data have different distributions or that they have different mean values? Having decided what the main message is, the next step is to examine the methods available and to select an appropriate one. Finally, once the chart or table has been constructed, it is worth reflecting upon whether what has been produced truly reflects the intended message. If not, then refine the display until satisfied; for example if a chart has been used would a table have been better or vice versa?" (Jenny Freeman et al, "How to Display Data", 2008)

"Where there is no natural ordering to the categories it can be helpful to order them by size, as this can help you to pick out any patterns or compare the relative frequencies across groups. As it can be difficult to discern immediately the numbers represented in each of the categories it is good practice to include the number of observations on which the chart is based, together with the percentages in each category." (Jenny Freeman et al, "How to Display Data", 2008)

✏️Jonathan Schwabish - Collected Quotes

"Active titles don't make us biased, but descriptive titles do waste an opportunity to make a clear, compelling case. Of course, short, active titles aren't always possible - you may be making more than one point or your sole goal is to simply describe the data. Generally speaking, however, integrating your graphs as part of your argument creates a more cohesive approach to making your argument and telling your story." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"An outlier is a data point that is far away from other observations in your data. It may be due to random variability in the data, measurement error, or an actual anomaly. Outliers are both an opportunity and a warning. They potentially give you something very interesting to talk about, or they may signal that something is wrong in the data." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Another cardinal sin of data visualization is what is called 'breaking the bar' - that is, using a squiggly line or shape to show that you've cropped one or more of the bars. It's tempting to do this when you have an outlier, but it distorts the relative values between the bars." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Another word of caution for dot plots that show changes over time. The dot plot is, by definition, a summary chart. It does not show all of the data in the intervening years. If the data between the two dots generally move in the same direction, a dot plot is sufficient. But if the data contain sharp variations year by year, a dot plot will obscure that pattern (as it also does for bar charts)." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"As data communicators, it is therefore our responsibility to treat our work and our data as carefully and objectively as possible. It is also our responsibility to recognize where our data may suffer from underlying bias or error, or even implicit bias that data creators may themselves not even be aware of." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"As data visualization creators, we must understand our audience and know when a different graph can engage readers - and help them expand their own graphic literacy." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Clutter is the main issue to keep in mind when assessing whether a paired bar chart is the right approach. With too many bars, and especially when there are more than two bars for each category, it can be difficult for the reader to see the patterns and determine whether the most important comparison is between or within the different categories." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Data visualization is a mix of science and art. Sometimes we want to be closer to the science side of the spectrum - in other words, use visualizations that allow readers to more accurately perceive the absolute values of data and make comparisons. Other times we may want to be closer to the art side of the spectrum and create visuals that engage and excite the reader, even if they do not permit the most accurate comparisons." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"People see bar charts and line charts and pie charts all the time, and those charts are often boring. Boring graphs are forgettable. Different shapes and uncommon forms that move beyond the borders of our typical data visualization experience can draw readers in." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Showing the data and reducing the clutter means reducing extraneous gridlines, markers, and shades that obscure the actual data. Active titles, better labels, and helpful annotations will integrate your chart with the text around it. When charts are dense with many data series, you can use color strategically to highlight series of interest or break one dense chart into multiple smaller versions."  (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Start with gray. Whenever you make a graph, start with all-gray data elements. By doing so, you force yourself to be purposeful and strategic in your use of color, labels, and other elements." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Standard graphs, like bar and line charts, are so common because they are perceptually more accurate, familiar to people, and easy to create. Nonstandard graphs - those that use circles or curves, for instance - may not allow the reader to most accurately perceive the exact data values. But perceptual accuracy is not always the goal. And sometimes it's not a goal at all. Spurring readers to engage with a graph is sometimes just as important. Sometimes, it's more important. And nonstandard chart types may do just that. In some cases, nonstandard graphs may help show underlying patterns and trends in better ways that standard graphs. In other cases, the fact that these nonstandard graphs are different may make them more engaging, which we may sometimes need to first attract attention to the visualization."  (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"The radial bar chart, also called the polar bar chart, arranges the bars to radiate outward from the center of a circle. This graph lies lowers on the perceptual ranking list because it is harder to compare the heights of the bars arranged around a circle than when they are arranged along a single flat axis. But this layout does allow you to fit more values in a compact space, and makes the radial bar chart well-suited for showing more data, frequent changes (such as monthly or daily), or changes over a long period of time." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.