12 March 2025

🏭🎗️🗒️Microsoft Fabric: Query Acceleration [Notes]

Disclaimer: This is work in progress intended to consolidate information from various sources for learning purposes. For the latest information please consult the documentation (see the links below)! 

Last updated: 12-Mar-2025

Query Acceleration
Query Acceleration [2]

[Microsoft Fabric] Query Acceleration

  • {def} 
    • indexes and caches data landing in OneLake on the fly
      • {benefit} allows to 
        • analyze real-time streams coming directly into Eventhouse and 
        • combine it with data landing in OneLake either coming from mirrored databases, Warehouses, Lakehouses or Spark [2] 
        • ⇒ accelerate data landing in OneLake
          • ⇐ including existing data and any new updates, and expect similar performance [1]
          • eliminates the need to 
            • manage ingestion pipelines [1]
            • maintain duplicate copies of data [1]
          • ensures that data remains in sync without additional effort [4]
          • the initial process is dependent on the size of the external table [4]
      • ⇐ provides significant performance comparable to ingesting data in Eventhouse [1]
        • in some cases up to 50x and beyond [2]
      • ⇐ supported in Eventhouse over delta tables from OneLake shortcuts, etc. [4]
        • when creating a shortcut from an Eventhouse to a OneLake delta table, users can choose if they want to accelerate the shortcut [2]
        • accelerating the shortcut means equivalent ingestion into the Eventhouse: indexing, caching, other optimizations that deliver the same level of performance for accelerated shortcuts as native Eventhouse tables [2]
      • all data management is done by the data writer and in the Eventhouse the accelerated table shortcut [2]  
      • behave like external tables, with the same limitations and capabilities [4]
        • {limitation} materialized view aren't supported [1]
        • {limitation} update policies aren't supported [1]
    • allows specifying a policy on top of external delta tables that defines the number of days to cache data for high-performance queries [1]
      • ⇐ queries run over OneLake shortcuts can be less performant than on data that is ingested directly to Eventhouses [1]
        • ⇐ due to network calls to fetch data from storage, the absence of indexes, etc. [1]
    • {costs} charged under OneLake Premium cache meter [2]
      • ⇐ similar to native Eventhouse tables [2]
      • one can control the amount of data to accelerate by configuring number of days to cache [2]
      • indexing activity may also count towards CU consumption [2]
    • {limitation} the number of columns in the external table can't exceed 900 [1]
    • {limitation} query performance over accelerated external delta tables which have partitions may not be optimal during preview [1]
    • {limitation} the feature assumes delta tables with static advanced features
      • e.g. column mapping doesn't change, partitions don't change, etc
      • {recommendation} to change advanced features, first disable the policy, and once the change is made, re-enable the policy [1]
    • {limitation} schema changes on the delta table must also be followed with the respective .alter external delta table schema [1]
      • might result in acceleration starting from scratch if there was breaking schema change [1]
    • {limitation} index-based pruning isn't supported for partitions [1]
    • {limitation} parquet files with a compressed size higher than 6 GB won't be cached [1]
Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) Fabric: Query acceleration for OneLake shortcuts - overview (preview) [link]
[2] Microsoft Fabric Updates Blog (2024) Announcing Eventhouse Query Acceleration for OneLake Shortcuts (Preview) [link]
[3] Microsoft Learn (2024) Fabric: Query acceleration over OneLake shortcuts (preview) [link]

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.