29 May 2024

📊Graphical Representation: Graphics We Live By (Part VII: Reading a Conversion Rates Chart with ChatGPT and Copilot)

Graphical Representation Series
Graphical Representation Series

One of the areas where ChatGPT, Copilot and other similar AI-based chatbots can help is in summarizing a chart saved as image. Ideally, the chatbots should be able also to approximate the points from the chart as well (an image is made of pixels and thus areas should be easy to delimit). So, I was wondering how far the chatbots can be used for these purposes. I used first an image copied from the web, though I realized that not all visual elements could be read (e.g. Copilot had issues retrieving the values for some months) and I had no basis data for comparisons to identify how big the deviations are. 

So, I created a chart in Power BI based on the below chart (see original data):

Conversion Rates Dual Axes Chart
Conversion Rates Dual Axes Chart

Here's the output based on Copilot over several attempts:
Original data First attempt Second attempt Third attempt Fourth attempt
Sorting Month Conv. Conv. Rate Conv. Conv. Rate Conv. Conv. Rate Conv. Conv. Rate Conv. Conv. Rate
1 Jul 8 4 10 1 10 1 8 4 8 4
2 Aug 280 16 275 15 275 15 275 18 275 18
3 Sep 100 13 225 12 225 10 225 12 225 12
4 Oct 280 14 275 12 275 11 275 11 275 11
5 Nov 90 4 75 5 75 6 75 6 75 6
6 Dec 85 3.5 100 5 100 5 100 5 100 5
7 Jan 70 4.5 50 3 50 3 50 4 50 4
8 Feb 30 1.5 50 3 25 2 50 2.5 50 2.5
9 Mar 70 4 25 1 50 2.5 25 1.5 25 1.5
10 Apr 185 11 200 10 200 10 200 10 200 10
11 May 25 3.5 50 4 50 4 50 3.5 50 3.5
12 Jun 195 4 225 10 225 10 225 11 195 4

Please note that same values were repeated to identify whether the chatbot is able to identify the resemblance correctly. 

Based on the data several tests were made with ChatGPT4o, where the following prompts were given:

  1. generate the data behind the chart as excel list (see 'First attempt' in the table)
  2. generate the data behind the chart as excel list where blue is represented on the left axis and orange on the right axis (see 'Second attempt');
  3. reevaluate the values from the previous output considering that the values for Jul are 8, respectively 4% (see 'Third attempt');
  4. reevaluate the values from the previous output considering that the values for Jun are 195, respectively 4% (see 'Fourth attempt');
  5. generate the data behind the dual axis chart as list from the last conversation;
  6. summarize the chart by revealing trends and other statistics.
From attempt to attempt, the values get closer to the original data, corrections being made, though there are points in the final output that diverge considerably. ChatGPT does generate a table which can be easily copied to MS Excel, and even gives some instructions on how to generate a dual axis chart. 

It's great that one can use data between sessions and improve maybe the output. ChatGPT's summary is better than expected and it leverages the latest corrections. However, the estimations need to improve so that the inferences can be correct. 

Here's the output based on the same prompts in Copilot:
Original data First attempt Second attempt Third attempt Fourth attempt
Sorting Month Conv. Conv. Rate Conv. Conv. Rate Conv. Conv. Rate Conv. Conv. Rate Conv. Conv. Rate
1 Jul 8 4 300 18 300 18 8 4 8 4
2 Aug 280 16 250 16 250 16 250 16 250 16
3 Sep 100 13 200 14 200 14 200 14 200 14
4 Oct 280 14 150 12 150 12 150 12 150 12
5 Nov 90 4 100 10 100 10 100 10 100 10
6 Dec 85 3.5 50 8 50 8 50 8 50 8
7 Jan 70 4.5 300 18 300 18 300 18 300 18
8 Feb 30 1.5 250 16 250 16 250 16 250 16
9 Mar 70 4 200 14 200 14 200 14 200 14
10 Apr 185 11 150 12 150 12 150 12 150 12
11 May 25 3.5 100 10 100 10 100 10 100 10
12 Jun 195 4 50 8 50 8 50 8 195 4

Copilot's estimations are higher than the ones made by ChatGPT and deviate more from the original data. No reevaluations are done between prompts for the other values. The summary provides information that can be used to complement ChatGPT's output. 

Overall, ChatGPT seems to perform better than Copilot, at least for this example (though we might talk here about different "generations"). Unfortunately, given that the estimations provided by both chatbots deviate considerably from the expectation, the output needs to be revised and corrected, which decreases the usability of such chatbots. In fact, one can use them to generate an initial set of data and correct then the deviations.

The outputs of other chatbots like Google's Gemini or Claude-3-Haiku (via Poe) can't be compared with the ones from ChatGPT or Copilot yet. Claude-3-Haiku does provide estimated values (even with comma), though they deviate considerably from the original data. 

It would be interesting to test how other charts and plots are processed by chatbots, respectively whether the various visual elements (e.g. gridlines, ticks, markers) make a difference.

Previous Post <<||>> Next Post

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.